Comparative Evaluation of Dormand Prince and Cash-Karp Method in Lengyel Epstein Reaction Model Forming Zinc Oxide (ZnO) Nanostructures

  • Kaniz Fatima Department of Humanities and Social Sciences, Bahria University, Karachi Campus, Pakistan
  • Talat Sharafat Rehmani Department of Humanities and Social Sciences, Bahria University Karachi Campus, Karachi, Pakistan
  • Sarwat Ishaque Department of Computer Science and Quantitative, KASBIT, Karachi, Pakistan
Keywords: cash-karp, dormand prince method, lengyel epstein reaction model, Ordinary Differential Equations (ODEs), zinc oxide (ZnO) nanostructures

Abstract

Abstract Views: 0

The current study employed two different numerical techniques to solve the Ordinary Differential Equations (ODEs) of the Lengyel Epstein reaction model. This was done for direct comparison with their results on the production of Zinc oxide (ZnO) nanostructures using Dormand Prince and Cash-Karp methods. Furthermore, the study aimed to determine the numerical approximation that may provide an estimate for the concentration of Zinc ion (Zn+2) and Hydroxyl ion (OH-) in the growth process of a ZnO nanostructure. The current study utilized the Cash-Karp method to solve ODE used in the development of the Lengyel Epstein reaction model. Afterwards, the results obtained from this approach were compared with the Dormand Prince method to determine its efficiency. After appropriate detail analysis, it was determined that Cash-Karp yields more consistent results as compared to the Dormand Prince method. The simulation for the solution of ODEs offers a higher convergence rate when Cash-Karp method is used. The error margin of the Cash-Karp method is comparatively smaller than that of the Dormand Prince method which may also be verified by the experimental results of growth of ZnO nanostructures.

Downloads

Download data is not yet available.

References

Abramovits, W., Granowski, P., & Arrazola, P. (2010). Applications of nanomedicine in dermatology: Use of nanoparticles in various therapies and imaging. Journal of Cosmetic Dermatology, 9(2), 154–159. https://doi.org/10.1111/j.1473-2165.2010.00492.x

Begum, P. S., Joseph, R., & Yusuff, K. M. (2008). Preparation of nano zinc oxide, its characterization and use in natural rubber. Progress in Rubber Plastics and Recycling Technology, 24(2), 141–152. https://doi.org/10.1177/147776060802400204

Cash, J. R., & Karp, A. H. (1990). A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16(3), 201–222. https://doi.org/10.1145/79505.79507

Chen, J., Jing, Q., Xu, Y., Lin, Y., Mai, Y., Chen, L., Wang, G., Chen, Z.,

Deng, L., Chen, J., Yuan, C., Jiang, L., Xu, P., & Huang, M. (2022). Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. Biomaterials Advances, 135, Article e212728. https://doi.org/10.1016/j.bioadv.2022.212728

De Lucas-Gil, E., Menéndez, J., Pascual, L., Fernández, J. F., & Rubio- Marcos, F. (2020). The benefits of the ZnO/Clay composite formation as a promising antifungal coating for paint applications. Applied Sciences, 10(4), Article e1322. https://doi.org/10.3390/app10041322

Fatima, K., Ali, B., Ishaque, S., & Ahmed, H. (2024). Comparison of Adams-Bashforth-Moulton and Dormand-Prince methods in Lengyel-

Epstein reaction model forming zinc oxide nanostructures. Scientific Inquiry and Review, 8(3), 88–101. https://doi.org/10.32350/sir.83.04

Fatima, N. K., Ali, N. B., & Mahnoor, N. (2022). Implementation of Lengyel-Epstein reaction model for zinc oxide (ZnO) nanostructures by comparing euler and fourth-order Runge–Kutta (RK) methods. Scientific Inquiry and Review, 6(1), 23–33. https://doi.org/10.32350/sir.61.02

Florescu, D. I., Mourokh, L. G., Pollak, F. H., Look, D. C., Cantwell, G., & Li, X. (2002). High spatial resolution thermal conductivity of bulk ZnO (0001). Journal of Applied Physics, 91(2), 890–892. https://doi.org/10.1063/1.1426234

Haque, M. A., & Desai, A. V. (2007, January 22–23). Mechanical properties of ZnO nanowires [Paper presentation]. Proceedings of SPIE, the International Society for Optical Engineering. California, USA. https://doi.org/10.1117/12.700353

Ianni, J. C. (2003). A comparison of the Bader-Deuflhard and the Cash- Karp Runge-Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus. In K. J. Bathe (Ed.), Computational fluid and solid mechanics (pp. 1368–1372). Elsevier. https://doi.org/10.1016/b978-008044046-0.50335-3

Kaushik, M., Niranjan, R., Thangam, R., Madhan, B., Pandiyarasan, V., Ramachandran, C., Oh, D., & Venkatasubbu, G. D. (2019). Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science, 479, 1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189

Klingshirn, C. (2007). ZnO: From basics towards applications. Physica Status Solidi, 244(9), 3027–3073. https://doi.org/10.1002/pssb.200743072

Le, A. T., Ahmadipour, M., & Pung, S. (2020). A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. Journal of Alloys and Compounds, 844, Article e156172. https://doi.org/10.1016/j.jallcom.2020.156172

Liu, Y., Li, Y., & Zeng, H. (2013). ZnO‐Based transparent conductive thin films: Doping, performance, and processing. Journal of Nanomaterials, 2013(1), Article e196521. https://doi.org/10.1155/2013/196521

Lu, M., Gong, H., Song, T., Wang, J., Zhang, H., & Zhou, T. (2006). Nanoparticle composites: FePt with wide-band-gap semiconductor. Journal of Magnetism and Magnetic Materials, 303(2), 323–328. https://doi.org/10.1016/j.jmmm.2006.01.246

Mammah, S. L., Opara, F. E., Sigalo, F. B., Ezugwu, S. C., & Ezema, F. I. (2012). Effect of concentration on the optical and solid state properties of ZnO thin films deposited by aqueous chemical growth (ACG) method. Journal of Modern Physics, 3(10), 1516–1522. https://doi.org/10.4236/jmp.2012.310187

Mishra, Y. K., Modi, G., Cretu, V., Postica, V., Lupan, O., Reimer, T., Paulowicz, I., Hrkac, V., Benecke, W., Kienle, L., & Adelung, R. (2015). Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Applied Materials & Interfaces, 7(26), 14303–14316. https://doi.org/10.1021/acsami.5b02816

Morganti, P. (2010). Use and potential of nanotechnology in cosmetic dermatology. Clinical Cosmetic and Investigational Dermatology, 3, 5–

https://doi.org/10.2147/ccid.s4506

Naranjo-Noda, F., & Jimenez, J. (2020). Locally linearized Runge-Kutta method of dormand and prince for large systems of initial value problems. Journal of Computational Physics, 426, Article e109946. https://doi.org/10.1016/j.jcp.2020.109946

Reinosa, J. J., Leret, P., Álvarez-Docio, C. M., Del Campo, A., & Fernández, J. F. (2016). Enhancement of UV absorption behavior in ZnO–TiO2 composites. Boletín De La Sociedad Española De Cerámica Y Vidrio, 55(2), 55–62. https://doi.org/10.1016/j.bsecv.2016.01.004

Sandeep, K., Bhat, S., & Dharmaprakash, S. (2017). Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. Journal of Physics and Chemistry of Solids, 104, 36–44. https://doi.org/10.1016/j.jpcs.2017.01.003

Seen, W. M., Gobithaasan, R. U., & Miura, K. T. (2014). GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince

method. AIP Conference Proceedings, 1605(1), 16–21. https://doi.org/10.1063/1.4887558

Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028–3035.

https://doi.org/10.1016/j.matpr.2020.10.238

Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15(5), 464–466. https://doi.org/10.1002/adma.200390108

Wada, C. (2008). Investigation of a distance presentation method using speech audio navigation for the blind or visually impaired. In S. Pinder (Ed.), Advances in human-computer interaction (pp. 535–542). Intech Open. https://doi.org/10.5772/5906

Yamamoto, N., Makino, H., & Yamamoto, T. (2011). Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Advances in Materials Science and Engineering, 2011(1), 1–10. https://doi.org/10.1155/2011/136127

Published
2024-12-31
How to Cite
Fatima, K., Rehmani, T. S., & Ishaque, S. (2024). Comparative Evaluation of Dormand Prince and Cash-Karp Method in Lengyel Epstein Reaction Model Forming Zinc Oxide (ZnO) Nanostructures. Journal of Applied Research and Multidisciplinary Studies, 5(2). https://doi.org/10.32350/jarms.52.01