Comparative Evaluation of Dormand Prince and Cash-Karp Method in Lengyel Epstein Reaction Model Forming Zinc Oxide (ZnO) Nanostructures
Abstract
Abstract Views: 0
The current study employed two different numerical techniques to solve the Ordinary Differential Equations (ODEs) of the Lengyel Epstein reaction model. This was done for direct comparison with their results on the production of Zinc oxide (ZnO) nanostructures using Dormand Prince and Cash-Karp methods. Furthermore, the study aimed to determine the numerical approximation that may provide an estimate for the concentration of Zinc ion (Zn+2) and Hydroxyl ion (OH-) in the growth process of a ZnO nanostructure. The current study utilized the Cash-Karp method to solve ODE used in the development of the Lengyel Epstein reaction model. Afterwards, the results obtained from this approach were compared with the Dormand Prince method to determine its efficiency. After appropriate detail analysis, it was determined that Cash-Karp yields more consistent results as compared to the Dormand Prince method. The simulation for the solution of ODEs offers a higher convergence rate when Cash-Karp method is used. The error margin of the Cash-Karp method is comparatively smaller than that of the Dormand Prince method which may also be verified by the experimental results of growth of ZnO nanostructures.
Downloads
References
Abramovits, W., Granowski, P., & Arrazola, P. (2010). Applications of nanomedicine in dermatology: Use of nanoparticles in various therapies and imaging. Journal of Cosmetic Dermatology, 9(2), 154–159. https://doi.org/10.1111/j.1473-2165.2010.00492.x
Begum, P. S., Joseph, R., & Yusuff, K. M. (2008). Preparation of nano zinc oxide, its characterization and use in natural rubber. Progress in Rubber Plastics and Recycling Technology, 24(2), 141–152. https://doi.org/10.1177/147776060802400204
Cash, J. R., & Karp, A. H. (1990). A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16(3), 201–222. https://doi.org/10.1145/79505.79507
Chen, J., Jing, Q., Xu, Y., Lin, Y., Mai, Y., Chen, L., Wang, G., Chen, Z.,
Deng, L., Chen, J., Yuan, C., Jiang, L., Xu, P., & Huang, M. (2022). Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. Biomaterials Advances, 135, Article e212728. https://doi.org/10.1016/j.bioadv.2022.212728
De Lucas-Gil, E., Menéndez, J., Pascual, L., Fernández, J. F., & Rubio- Marcos, F. (2020). The benefits of the ZnO/Clay composite formation as a promising antifungal coating for paint applications. Applied Sciences, 10(4), Article e1322. https://doi.org/10.3390/app10041322
Fatima, K., Ali, B., Ishaque, S., & Ahmed, H. (2024). Comparison of Adams-Bashforth-Moulton and Dormand-Prince methods in Lengyel-
Epstein reaction model forming zinc oxide nanostructures. Scientific Inquiry and Review, 8(3), 88–101. https://doi.org/10.32350/sir.83.04
Fatima, N. K., Ali, N. B., & Mahnoor, N. (2022). Implementation of Lengyel-Epstein reaction model for zinc oxide (ZnO) nanostructures by comparing euler and fourth-order Runge–Kutta (RK) methods. Scientific Inquiry and Review, 6(1), 23–33. https://doi.org/10.32350/sir.61.02
Florescu, D. I., Mourokh, L. G., Pollak, F. H., Look, D. C., Cantwell, G., & Li, X. (2002). High spatial resolution thermal conductivity of bulk ZnO (0001). Journal of Applied Physics, 91(2), 890–892. https://doi.org/10.1063/1.1426234
Haque, M. A., & Desai, A. V. (2007, January 22–23). Mechanical properties of ZnO nanowires [Paper presentation]. Proceedings of SPIE, the International Society for Optical Engineering. California, USA. https://doi.org/10.1117/12.700353
Ianni, J. C. (2003). A comparison of the Bader-Deuflhard and the Cash- Karp Runge-Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus. In K. J. Bathe (Ed.), Computational fluid and solid mechanics (pp. 1368–1372). Elsevier. https://doi.org/10.1016/b978-008044046-0.50335-3
Kaushik, M., Niranjan, R., Thangam, R., Madhan, B., Pandiyarasan, V., Ramachandran, C., Oh, D., & Venkatasubbu, G. D. (2019). Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science, 479, 1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189
Klingshirn, C. (2007). ZnO: From basics towards applications. Physica Status Solidi, 244(9), 3027–3073. https://doi.org/10.1002/pssb.200743072
Le, A. T., Ahmadipour, M., & Pung, S. (2020). A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. Journal of Alloys and Compounds, 844, Article e156172. https://doi.org/10.1016/j.jallcom.2020.156172
Liu, Y., Li, Y., & Zeng, H. (2013). ZnO‐Based transparent conductive thin films: Doping, performance, and processing. Journal of Nanomaterials, 2013(1), Article e196521. https://doi.org/10.1155/2013/196521
Lu, M., Gong, H., Song, T., Wang, J., Zhang, H., & Zhou, T. (2006). Nanoparticle composites: FePt with wide-band-gap semiconductor. Journal of Magnetism and Magnetic Materials, 303(2), 323–328. https://doi.org/10.1016/j.jmmm.2006.01.246
Mammah, S. L., Opara, F. E., Sigalo, F. B., Ezugwu, S. C., & Ezema, F. I. (2012). Effect of concentration on the optical and solid state properties of ZnO thin films deposited by aqueous chemical growth (ACG) method. Journal of Modern Physics, 3(10), 1516–1522. https://doi.org/10.4236/jmp.2012.310187
Mishra, Y. K., Modi, G., Cretu, V., Postica, V., Lupan, O., Reimer, T., Paulowicz, I., Hrkac, V., Benecke, W., Kienle, L., & Adelung, R. (2015). Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Applied Materials & Interfaces, 7(26), 14303–14316. https://doi.org/10.1021/acsami.5b02816
Morganti, P. (2010). Use and potential of nanotechnology in cosmetic dermatology. Clinical Cosmetic and Investigational Dermatology, 3, 5–
https://doi.org/10.2147/ccid.s4506
Naranjo-Noda, F., & Jimenez, J. (2020). Locally linearized Runge-Kutta method of dormand and prince for large systems of initial value problems. Journal of Computational Physics, 426, Article e109946. https://doi.org/10.1016/j.jcp.2020.109946
Reinosa, J. J., Leret, P., Álvarez-Docio, C. M., Del Campo, A., & Fernández, J. F. (2016). Enhancement of UV absorption behavior in ZnO–TiO2 composites. Boletín De La Sociedad Española De Cerámica Y Vidrio, 55(2), 55–62. https://doi.org/10.1016/j.bsecv.2016.01.004
Sandeep, K., Bhat, S., & Dharmaprakash, S. (2017). Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. Journal of Physics and Chemistry of Solids, 104, 36–44. https://doi.org/10.1016/j.jpcs.2017.01.003
Seen, W. M., Gobithaasan, R. U., & Miura, K. T. (2014). GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince
method. AIP Conference Proceedings, 1605(1), 16–21. https://doi.org/10.1063/1.4887558
Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028–3035.
https://doi.org/10.1016/j.matpr.2020.10.238
Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15(5), 464–466. https://doi.org/10.1002/adma.200390108
Wada, C. (2008). Investigation of a distance presentation method using speech audio navigation for the blind or visually impaired. In S. Pinder (Ed.), Advances in human-computer interaction (pp. 535–542). Intech Open. https://doi.org/10.5772/5906
Yamamoto, N., Makino, H., & Yamamoto, T. (2011). Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films. Advances in Materials Science and Engineering, 2011(1), 1–10. https://doi.org/10.1155/2011/136127
Copyright (c) 2024 Kaniz Fatima kaniz, Talat Sharafat Rehmani, Sarwat Ishaque

This work is licensed under a Creative Commons Attribution 4.0 International License.
