Deep Learning Model Training and Evaluation Framework for Diabetic Retinopathy Detection Using PSO-Optimized Hyper parameters

  • Ahsan Masroor sir syed univetsity of engineering and Technology
  • Dr. Affan Alim Iqra University
  • asif raza
Keywords: Diabetic Retinopathy, Deep learning, Classification, VGG19, Particle Swarm Optimization (PSO), Inception v3, MobileNetV3

Abstract

Abstract Views: 0

Currently, numerous healthcare physicians are having hitches detecting diabetic retinopathy early in patients. This disease's primary warning indications are challenging to detect. A clear-cut instruction technique is compulsory to detect this condition timely. Deep learning is one method to use for this purpose. This work used a particle swarm optimization (PSO) technique to select the optimal Diabetic Retinopathy. Applying deep learning with particle swarm optimization (PSO) resulted in a 73.11% increase in outcome. This VGG19 model exhibits training and validation losses of 0.755 and 0.7151, respectively. VGG19 shows the finest simplification capability, as realized since the minor variance among training and validation victims. This model realizes steadily on together training and hidden data.

Downloads

Download data is not yet available.

References

A. Loke. “Diabetes.” WHO. http://www.who.int/en/news-room/fact-sheets/detail/diabetes (updated Nov. 14, 2024).

Y. Zheng, S. H. Ley, and F. B. Hu, “Global aetiology and epidemiology of type 2 diabetes mellitus and its complications,” Nat. Rev. Endocrinol., vol. 14, no. 2, pp. 88–98, Dec. 2017, doi: https://doi.org/10.1038/nrendo.2017.151.

S. Sreng, N. Maneerat, D. Isarakorn, K. Hamamoto, and R. Panjaphongse, “Primary screening of diabetic retinopathy based on integrating morphological operation and support vector machine,” in Proc. Int. Conf. Intell. Inf. Biomed. Sci., 2017, pp. 250–254, doi: https://doi.org/10.1109/ICIIBMS.2017.8279750.

P. Saeedi et al., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas,” Diabetes Res. Clin. Pract., vol. 157, Nov. 2019, Art. no. 107843, doi: https://doi.org/10.1016/j.diabres.2019.107843.

B. Antal and A. Hajdu, “An ensemble-based system for automatic screening of diabetic retinopathy,” Knowl.-Based Syst., vol. 60, pp. 20–27, Apr. 2014, doi: https://doi.org/10.1016/j.knosys.2013.12.023.

C. Valverde, M. Garcia, R. Hornero, and M. I. López-Gálvez, “Automated detection of diabetic retinopathy in retinal images,” Indian J. Ophthalmol., vol. 64, no. 1, pp. 26–32, Jan. 2016, doi: https://doi.org/10.4103/0301-4738.178140.

A. Herliana, “Optimasi klasifikasi sel tunggal pap smear menggunakan correlation based feature selection (CFS) berbasis C4.5 dan Naive Bayes,” J. Inform., vol. 3, no. 2, pp. 148–155, Oct. 2016, doi: https://doi.org/10.31294/ji.v3i2.1167.

T. Hidayatulloh, A. Herliana, and T. Arifin, “Klasifikasi sel tunggal pap smear berdasarkan analisis fitur berbasis Naive Bayes classifier dan particle swarm optimization,” Swabumi, vol. 4, no. 1, pp. 186–193, 2016.

T. Arifin, “Implementasi algoritma PSO dan teknik bagging untuk klasifikasi sel pap smear,” J. Inform., vol. 4, no. 2, pp. 155–162, 2017.

National Eye Institute. “At a glance: Diabetic retinopathy.” 2008. [Online]. Available: https://tinyurl.com/2suzxbs4.

J. Yadav, M. Sharma, and V. Saxena, “Diabetic retinopathy detection using feedforward neural network,” in Proc. 10th Int. Conf. Contemp. Comput., 2017, pp. 1–3, doi: https://doi.org/10.1109/IC3.2017.8284348.

S. K. Ghosh, B. Biswas, and A. Ghosh, “A novel approach of retinal image enhancement using PSO system and measure of fuzziness,” Proc. Comput. Sci., vol. 167, pp. 1300–1311, Jan. 2020, doi: https://doi.org/10.1016/j.procs.2020.03.446.

W. Sae-lim, W. Wettayaprasit, and P. Aiyarak, “Convolutional neural networks using MobileNet for skin lesion classification,” in Proc. 16th Int. Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Chonburi, Thailand, Jul. 2019, pp. 242–247, doi: https://doi.org/10.1109/JCSSE.2019.8864154.

C. Bi, J. Wang, and Y. Duan, “MobileNet-based apple leaf diseases identification,” Mobile Netw. Appl., vol. 27, pp. 172–180, 2020, doi: https://doi.org/10.1007/s11036-020-01540-8.

G. Chugh, A. Sharma, P. Choudhary, and R. Khanna, “Potato leaf disease detection using Inception V3,” Int. Res. J. Eng. Technol., vol. 7, no. 1, 2020.

Published
2025-12-22
How to Cite
Masroor, A., Dr. Affan Alim, & asif raza. (2025). Deep Learning Model Training and Evaluation Framework for Diabetic Retinopathy Detection Using PSO-Optimized Hyper parameters. UMT Artificial Intelligence Review, 4(2), 83-91. https://doi.org/10.32350/umt-air.42.05
Section
Articles