A Comprehensive Review of Automatic Semantic Segmentation of Brain MRI: Techniques, Discussion, Challenges

  • Sajid Ullah Khan The University of Lahore Pakistan
Keywords: Brain tumor, MRI segmentation, Automated detection, Medical imaging, Diagnostic accuracy

Abstract

Abstract Views: 0

Brain tumors, often cancerous, require early detection to improve treatment outcomes and patient survival rates. Automated segmentation of brain tumor images using semantic parameters in medical imaging is complex due to the absence of standardized methods for diverse image dimensions. Challenges include varying image characteristics, disease severity, continuity, content, and non-uniform textures. Clinicians predominantly use labor-intensive manual segmentation. Minimizing user intervention is crucial; current algorithms are primarily semi-automatic, requiring user interaction. Fully automatic methods demand high-resolution MRI images for precise segmentation due to lower noise levels, anatomical consistency, and intensity homogeneity. This review examines traditional and advanced MRI-based segmentation techniques, highlighting challenges, advancements, and proposing future directions for integrating these methods into clinical practice to enhance diagnostic accuracy and treatment efficacy.

Downloads

Download data is not yet available.

References

REFERENCES

B. Devkota et al., “Image segmentation for early stage brain tumor detection using mathematical

morphological reconstruction,” Proc. Comput. Sci., vol. 125, pp. 115–123, 2018, doi:

https://doi.org/10.1016/j.procs.2017.12.017.

N. M. Saad, A. Bakar, S. A. R. Sobri Muda, and M. Mokji, “Segmentation of brain lesions in diffusion

weighted MRI using thresholding technique,” presented at the IEEE Int. Conf. Signal Image Process. Appl.,

Kuala Lumpur, Malaysia, Nov. 16–18, 2011, doi: https://doi.org/10.1109/ICSIPA.2011.6144092.

J. Chen et al., “Transunet: Transformers make strong encoders for medical image segmentation,” 2021,

arXiv:2102.04306, doi: https://doi.org/10.48550/arXiv.2102.04306.

A. Kirillov et al., “Segment anything,” presented at 2023 IEEE/CVF International Conference on Computer

Vision (ICCV), Paris, Fracne, 1–6 Oct. 2023, doi: https://doi.org/10.1109/ICCV51070.2023.00371.

N. Mathur, S. Mathur, and D. Mathur, “A novel approach to improve Sobel edge detector,” Proc. Comput. Sci.,

vol. 78, pp. 431–438, 2016, doi: https://doi.org/10.1016/j.procs.2016.07.230.

A. Aslam, E. Khan, and M. M. S. Beg, “Improved edge detection algorithm for brain tumor segmentation,”

Proc. Comput. Sci., vol. 58, pp. 430–437, 2015.

R. D. Nowak, “Wavelet-based Rician noise removal for magnetic resonance imaging,” IEEE Transac. Image

Proc., vol. 8, no. 10, pp. 1408–1419, Oct. 1999, doi: https://doi.org/10.1109/83.791966.

R. Sudharania et al., “Morphological segmentation for brain tumors,” Proc. Comput. Sci., vol. 90, pp. 1–7, 2016.

K. S. A. Viji and J. Jayakumari, “Modified texture based region growing segmentation of MR brain

images,” presented at IEEE Conf. Info. Commun. Technol., Thuckalay, India, April 11–12, 2013, doi:

https://doi.org/10.1109/CICT.2013.6558183.

L. Ling, “Image division method research and realization,” J. Suzhou Coll., vol. 21, pp. 85–88, 2006.

R. Pandav, “Marker-controlled watershed segmentation for brain MRI tumors,” Int. J. Comput. Appl., vol.

, no. 10, pp. 21–27, 2014.

R. Chandra and K. R. H. Rao, “Tumor detection in brain using genetic algorithm,” Proc. Comput. Sci., vol. 79,

pp. 449–457, 2016, doi: https://doi.org/10.1016/j.procs.2016.03.058

J. V. De Oliveira and W. Pedrycz, Advances in Fuzzy Clustering and Its Applications. Hoboken, NJ, USA:

Wiley, 2007.

A. Aina, “Brain tumor segmentation using fuzzy C-means clustering,” Int. J. Comput. Appl., vol. 86, no. 16, pp.

–29, 2014.

K. M. Nimeesha and R. M. Gowda, “Brain tumor segmentation using k-means and fuzzy c-means clustering

algorithm,” IJCSIT Res. Excell., vol. 3, pp. 60–65, Apr. 2013.

B. Tanoori, Z. Azimifar, A. Shakibafar, and S. Katebi, “Brain volumetry: An active contour model-based

segmentation followed by SVM-based classification,” Comput. Biol. Med., vol. 41, pp. 619–632, Aug. 2011,

doi: https://doi.org/10.1016/j.compbiomed.2011.05.013.

S. Bauer, L. P. Nolte, and M. Reyes, “Fully automatic segmentation of brain tumor images using support vector

machine classification in combination with hierarchical conditional random field regularization,” in Medical

Image Computing and Computer-Assisted Intervention, G. Fichtinger, A. Martel, and T. Peters, Eds. Springer,

, pp. 354–361.

H. Al-Shaikhli, R. B. Ahmad, and A. Hussain, “Atlas-based segmentation of brain MRI images,” J. Med. Syst.,

vol. 38, no. 4, p. 33, 2014.

M. Diaz and P. Boulanger, “Atlas-based brain tumor segmentation without deformation model,” Comput Med

Imag Graph, vol. 45, pp. 1–11, 2015.

N. K. Subbanna and T. Arbel, “Probabilistic Gabor and Markov random fields segmentation of brain tumors

in MRI volumes,” in MICCAI-BRATS Workshop, 2012.

N. Subbanna, D. Precup, and T. Arbel, “Iterative multilevel IRF leveraging context and voxel information for

brain tumor segmentation in MRI,” presented at the 2014 IEEE Conf. Computer Vision and Pattern Recognition

(CVPR), Columbus, OH, USA, June 23–28, 2014, doi: https://doi.org/10.1109/CVPR.2014.58.

D. A. Dahab, S. S. A. Ghoniemy, M. Gamal, and A. Selim, “Automated brain tumor detection and identification

using image processing and probabilistic neural network techniques,” Int. J. Image Proc. Visual Commun., vol.

, no. 2, Oct. 2012.

P. A. Mei, C. C. Carneiro, S. J. Fraser, L. L. Min, and F. Reis, “Analysis of neoplastic lesions in magnetic

resonance imaging using self-organizing maps,” J. Neurol. Sci., vol. 359, no. 1-2, pp. 78–83, Dec. 2015, doi:

https://doi.org/10.1016/j.jns.2015.10.032.

A. De and C. Guo, “An adaptive vector quantization approach for image segmentation based on SOM network,”

Neurocomputing, vol. 198, pp. 48–58, Feb. 2015, doi: https://doi.org/10.1016/j.neucom.2014.02.069.

M. Havaei et al., “Brain tumor segmentation with deep neural networks,” Med. Image Anal., vol. 35, pp. 18–31,

Jan. 2017, doi: https://doi.org/10.1016/j.media.2016.05.004.

A. Demirhan and I. Guler, “Combining stationary wavelet transform and self-organizing maps for brain

MR image segmentation,” Eng. Appl. Artif. Intell., vol. 24, pp. 358–356, Mar. 2011, doi:

https://doi.org/10.1016/j.engappai.2010.09.008.

E. A. El-Dahshan et al., “Computer-aided diagnosis of human brain tumor through MRI: A survey and a new

algorithm,” Expert Syst. Appl., vol. 41, no. 11, pp. 5526–5545, Sep. 2014, doi:

https://doi.org/10.1016/j.eswa.2014.01.021.

J. Sachdeva et al., “Sfercb—segmentation, feature extraction, reduction and classification analysis by both

SVM and ANN for brain tumors,” Appl. Soft Comput., vol. 47, pp. 151–167, Oct. 2016, doi:

https://doi.org/10.1016/j.asoc.2016.05.020.

F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. Maier-Hein, “nnu-net: A self-adapting framework

for biomedical image segmentation,” Nat. Meth., vol. 18, pp. 203–211, 2021.

S. Deepak and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,”

Comput. Meth. Prog. Biomed., vol. 111, Art. no. 103345, Aug. 2019, doi:

https://doi.org/10.1016/j.compbiomed.2019.103345.

Z. Ji, Y. Xia, Q. Sun, Q. Chen, and D. Feng, “Adaptive scale fuzzy local Gaussian mixture model for brain MR

image segmentation,” Neurocomputing, vol. 134, pp. 60–69, June 2014, doi:

https://doi.org/10.1016/j.neucom.2012.12.067.

H. Verma, R. K. Agrawal, and A. Sharan, “An improved intuitionistic fuzzy c-means clustering algorithm

incorporating local information for brain image segmentation,” Appl. Soft Comput., vol. 46, pp. 543–557, Sep.

, doi: https://doi.org/10.1016/j.asoc.2015.12.022.

J. Sachdeva et al., “A novel content-based active contour model for brain tumor segmentation,” Magnet.

Resonan. Imag., vol. 30, pp. 694–715, June 2012, doi: https://doi.org/10.1016/j.mri.2012.01.006.

H. H. Sultan, N. M. Salem, and W. Al-Atabany, “Multi-classification of brain tumor images using deep

neural network,” IEEE Access, vol. 7, pp. 69215–69225, 2019, doi:

https://doi.org/10.1109/ACCESS.2019.2919122.

Y. K. Dubey, M. M. Mushrif, and K. Mitra, “Segmentation of brain MR images using rough-set-based

intuitionistic fuzzy clustering,” Biocyber. Biomed. Eng., vol. 36, no. 2, pp. 413–426, 2016, doi:

https://doi.org/10.1016/j.bbe.2016.01.001.

Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested U-Net architecture for medical

image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support. Springer Nature, 2018, pp. 3–11.

R. Dubey, M. Hanmandlu, and S. Vasikarla, “Contour-based segmentation with cuckoo search

optimization,” Appl. Soft Comput., vol. 41, pp. 235–247, 2016.

V. Anitha and S. Murugavalli, “Brain tumor classification using two-tier classifier with adaptive segmentation

technique,” IET Computer Vision, vol. 10, no. 1, pp. 9–17, Feb. 2016, doi: https://doi.org/10.1049/iet-

cvi.2014.0193.

N. Tustison et al., “Optimal symmetric multimodal templates and concatenated random forests for supervised

brain tumor segmentation with ANTsR,” Neuroinformatics, vol. 13, no. 2, pp. 209–225, 2015, doi:

https://doi.org/10.1007/s12021-014-9245-2.

L. Huang, S. Ruan, and T. Denœux, “Semi-supervised multiple evidence fusion for brain tumor

segmentation,” Neurocomputing, vol. 535, pp. 40–52, May 2023, doi:

https://doi.org/10.1016/j.neucom.2023.02.047.

K. Srinivas, K. R. Rao, and P. V. G. D. Reddy, “Brain tumor classification using deep neural networks with

feature extraction,” Biomed. Signal Proc. Cont., vol. 72, Art. no. 103285, 2022.

C. Ge, I. Y. H. Gu, A. S. Jakola, and J. Yang, “Deep learning and multi-view fusion for glioma classification

based on multimodal MR imaging,” in Proc. IEEE ISBI, 2018, pp. 411–414.

M. I. Sharif, J. P. Li, M. A. Khan, and M. A. Saleem, “Active deep neural network features selection for

segmentation and recognition of brain tumors using MRI images,” Patt. Recog. Lett., vol. 129, pp. 181–189,

Jan. 2020, doi: https://doi.org/10.1016/j.patrec.2019.11.019.

A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades

classification and grading via CNN and genetic algorithm,” Biocyber. Biomed. Eng., vol. 39, no. 1, pp. 63–74,

Jan-Mar. 2019, doi: https://doi.org/10.1016/j.bbe.2018.10.004.

S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using

deep learning: A survey,” IEEE Transac. Patt. Anal. Mach. Intell., vol. 44, no. 7, pp. 3523–3542, July 2022,

doi: https://doi.org/10.1109/TPAMI.2021.3059968.

A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. R. Roth, and D. Xu, “UNETR: Transformers for 3D medical

image segmentation,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vision, 2022, pp. 574–584.

X. Liu, H. Zhang, Y. Wang, and J. Chen, “Vision transformers for medical image segmentation: A review,”

IEEE Access, vol. 11, pp. 123 456–123 480, 2023.

S. Pereira et al., “Brain tumor segmentation using convolutional neural networks in MRI images,” IEEE

Transac. Med. Imag., vol. 35, no. 5, pp. 1240–1251, 2016.

J. Tang, Z. Li, Q. Chen, and X. Wang, “Optimization of 3d U-Net-based brain tumor segmentation on

consumer-grade edge devices using integer quantization,” ACM Transac. Multimed. Comput. Commun. Appl.,

vol. 20, no. x, pp. 1–20, 2024.

K. Kamnitsas et al., “Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion

segmentation,” Med. Image Anal., vol. 36, pp. 61–78, Feb. 2017, doi: https://doi.org/10.1016/j.media.2016.10.004.

R. Wang, P. Liu, S. Zhang, and Y. Li, “Transformer-based brain tumor segmentation in multi-modal mri: A

clinical study,” Human Brain Mapp., vol. 44, no. xx, pp. xxxx–xxxx, 2023.

A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H. R. Roth, and D. Xu, “Swin

UNETR: Swin transformers for 3d medical image segmentation,” in Proc. IEEE/CVF Conf. Comput. Vision

Patt. Recog. Workshps, 2022, pp. 360–371.

A. Myronenko, “3d MRI brain tumor segmentation using autoencoder regularization,” in BrainLes Workshop,

MICCAI, ser. LNCS, vol. 11384, 2018, pp. 311–320.

H. Ye, J. Zhou, and K. Sun, “Deep learning for medical image segmentation: Recent advances and future

trends,” Int. J. Imag. Syst. Technol., vol. 32, no. x, pp. xxx–xxx, 2022.

H. Wang, P. Cao, J. Wang, O. R. Zaiane, and Y. Gao, “TransBTS: Multimodal brain tumor segmentation

using transformer,” IEEE Access, vol. 9, pp. 123 412–123 423, 2021.

P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain tumor type classification via capsule networks,” in

Proc. IEEE Int. Conf. Image Proc., 2019, pp. 3129–3133.

M. M. Badzˇa and M. Cˇ. Barjaktarovic´, “Classification of brain tumors from MRI images using a

convolutional neural network,” Appl. Sci., vol. 10, no. 6, 2020, doi: https://doi.org/10.3390/app10061999.

S. U. Khan, M. N. Sharif, M. I. Niass, M. Afzal, and M. Shoaib, “Comparison of multiple deep models on

semantic segmentation for breast tumor detection,” Found. Univ. J. Eng. Appl. Sci., vol. 2, no. 1, pp. 12–23,2021, doi: https://doi.org/10.33897/fujeas.v2i1.424.

X. Gao, Y. Chen, D. Xu, and S. K. Zhou, “Vision transformers in medical image analysis: A comprehensive

survey,” ACM Comput. Surv, vol. 56, pp. 1–39, 2023.

D. Zikic et al., “Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR,” in

Med. Imag Comput. Comput. -Assist. Int., 2012.

S. Rao, S. Vemulapalli, and A. Reddy, “Brain tumor segmentation using random forest and convolutional neural

networks,” in Proc. IEEE Int. Conf. Image Proc., 2015, pp. 335–339.

P. Dvorak and B. Menze, “Structured prediction with CNN features for biomedical image segmentation,” in

Proc. IEEE CVPR Workshops, 2015, pp. 334–342.

G. Urban et al., “Multi-modal brain tumor segmentation using deep convolutional neural networks,” in MICCAI

BraTS Challenge, 2014.

S. U. Khan, F. Wang, J. J. Liou, and Y. Liu, “Segmentation of breast tumors using cutting-edge semantic

segmentation models,” Comput. Meth. Biomech. Biomed. Eng. Imag. Visualiz., vol. 11, no. 2, pp. 242–252, Apr.

, doi: https://doi.org/10.1080/21681163.2022.2064767.

G. Ji, S. Li, and W. Wu, “Brain tumor segmentation using FCM with spatial information,” Comput. Meth.

Program Biomed., vol. 43, no. 10, pp. 1523–1532, 2014.

R. Verma, R. Mehra, and D. Singh, “Brain tumor detection and segmentation using FCM,” Int. J. Adv. Res.

Comput. Sci. Soft. Eng., vol. 5, no. 2, pp. 385–390, 2015.

R. Dubey, M. Hanmandlu, and S. Vasikarla, “Brain tumor detection using intuitionistic rough set-based fuzzy

clustering,” Patt. Recog. Lett., vol. 73, pp. 146–153, 2016.

N. Subbanna, “Markov random field-based segmentation of brain tumors,” Med. Image Anal., vol. 18, no. 2, pp.

–326, 2014.

D. Kwon et al., “Joint segmentation and registration for multifocal gliomas,” IEEE Transac. Med. Imag., vol.

, no. 9, pp. 1873–1885, 2014.

A. Hamamci, N. Kucuk, K. Karaman, and G. Unal, “Tumor-cut: Segmentation of brain tumors on MR images

using a cellular automata method,” Med. Image Anal., vol. 16, no. 4, pp. 766–781, 2012.

K. Thapaliya, J. Y. Pyun, C. S. Park, and G. R. Kwon, “Level set method with automatic selective local

statistics for brain tumor segmentation in MR images,” Comput. Med. Imag. Graph., vol. 37, pp. 522–537,

Dec. 2013, doi: https://doi.org/10.1016/j.compmedimag.2013.05.003.

N. Gordillo, E. Montseny, and P. Sobrevilla, “State of the art survey on MRI brain tumor segmentation,” Mag.

Resonance Imag., vol. 31, no. 8, pp. 1426–1438, Oct. 2013, doi: https://doi.org/10.1016/j.mri.2013.05.002.

A. Isın, C. Direkog˘lu, and M. S¸ ah, “Review of MRI-based brain tumor image segmentation using deep

learning methods,” Proc. Comput. Sci., vol. 102, pp. 317–324, 2016, doi:

https://doi.org/10.1016/j.procs.2016.09.407.

O. Wink, W. J. Niessen, and M. A. Viergever, “Fast delineation and visualization of vessels in 3-d angiographic

images,” IEEE Transac. Med. Imag., vol. 16, pp. 337–346, Apr. 2000, doi: https://doi.org/10.1109/42.848184.

C. Y. Hu, M. D. Grossberg, and G. S. Mageras, “Survey of recent volumetric medical image segmentation

techniques,” in Biomedical Engineering, C. A. B. de Mello, Ed., Intech Open, 2009, pp. 321–346.

Published
2025-11-06
How to Cite
Khan, S. U. (2025). A Comprehensive Review of Automatic Semantic Segmentation of Brain MRI: Techniques, Discussion, Challenges. UMT Artificial Intelligence Review, 4(1), 62-82. https://doi.org/10.32350/umt-air.41.05
Section
Articles