Association of Temperature and Humidity with COVID-19 Transmission in Punjab, Pakistan
Abstract
Abstract Views: 138Due to the spread of multiple variants of COVID-19, the influence of humidity and temperature on their transmission and spread is a matter of scientific investigation. This research investigates the connection of relative humidity and daily high temperature with the quantity of daily definite COVID-19 cases in Punjab, Pakistan from March 11, 2020 to June 30, 2020. Generalized Additive Model (GAM) was applied to measure the said association. In this study, the interaction of relative humidity and temperature were discussed and the results indicated that the growth in humidity and temperature leads to a decline in the daily occurrence of cases. On the basis of the findings, the development and implementation of a proficient and effective health care information system are recommended so that the frequency and transmission of COVID-19 can be curtailed.
Keywords: COVID-19, Generalized Additive Model, humidity, temperature
JelCode: C140, I120, I180, Q24
Downloads
References
Altamimi, A., & Ahmed, A. E. (2020). Climate factors and incidence of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health, 13(5), 704-708. https://doi.org/10.1016/j.jiph.2019.11.011
Anderson, B. G., & Bell, M. L. (2009). Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology (Cambridge, Mass.), 20(2), 205-213. https://doi.org/10.1097/ EDE.0b013e318190ee08
Barreca, A. I., & Shimshack, J. P. (2012). Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States. American Journal of Epidemiology, 176 (suppl_7), S114-S122. https://doi.org/10.1093/aje/kws259
Bi, P., Wang, J., & Hiller, J. E. (2007). Weather: driving force behind the transmission of severe acute respiratory syndrome in China?. Internal Medicine Journal, 37(8), 550-554. https://doi.org/10.1111/j.1445-5994.2007.01358.x
Braga, A. L., Zanobetti, A., & Schwartz, J. (2002). The effect of weather on respiratory and cardiovascular deaths in 12 US cities. Environmental Health Perspectives, 110(9), 859-863.
Bunker, A., Wildenhain, J., Vandenbergh, A., Henschke, N., Rocklöv, J., Hajat, S., Sauerborn, R. (2016). Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. Ebiomedicine 6, 258–268
Cai, Q. C., Jiang, Q. W., Zhao, G. M., Guo, Q., Cao, G. W., & Chen, T. (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacologica Sinica, 24(10), 1051-1059.
Cai, Q.-C., Lu, J., Xu, Q.-F., Guo, Q., Xu, D.-Z., Sun, Q.-W., Yang, H., Zhao, G.-M., & Jiang, Q.-W. (2007). Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome. Public Health, 121(4), 258-265. https://doi.org/10.1016/ j.puhe.2006.09.023
Carson, C., Hajat, S., Armstrong, B., & Wilkinson, P. (2006). Declining vulnerability to temperature-related mortality in London over the 20th century. American Journal of Epidemiology, 164(1), 77-84.
Casanova, L. M., Jeon, S., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2010). Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Microbiology, 76(9), 2712-2717.
Chan, K. H., Peiris, J. M., Lam, S. Y., Poon, L. L. M., Yuen, K. Y., & Seto, W. H. (2011). The effects of temperature and relative humidity on the viability of the SARS coronavirus. Advances in Virology, 2011, 1-7.
Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., Li, J., Zhao, D., Xu, D., Gong, Q., Liao, J., Yang, H., Hou, W., & Zhang, Y. (2020). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet, 395(10226), 809-815. https://doi.org/https://doi.org/10.1016/S0140-6736(20)30360-3
Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L., & Patz, J. A. (2002). Temperature and mortality in 11 cities of the eastern United States. American journal of Epidemiology, 155(1), 80-87.
Dadbakhsh, M., Khanjani, N., Bahrampour, A., & Haghighi, P. S. (2017). Death from respiratory diseases and temperature in Shiraz, Iran (2006–2011). International Journal of Biometeorology, 61(2), 239-246. https://doi.org/10.1007/s00484-016-1206-z
Davis, R. E., Hondula, D. M., & Patel, A. P. (2016). Temperature observation time and type influence estimates of heat-related mortality in seven US cities. Environmental Health Perspectives, 124(6), 795-804.
Donaldson, G. C., Seemungal, T., Jeffries, D. J., & Wedzicha, J. A. (1999). Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. European Respiratory Journal, 13(4), 844-849.
Du, Z., Xu, L., Zhang, W., Zhang, D., Yu, S., & Hao, Y. (2017). Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. BMJ Open, 7(10), e016263. http://dx.doi.org/10.1136/bmjopen-2017-016263
Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., & Jamason, P. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364-367.
Firestone, S. M., Cogger, N., Ward, M. P., Toribio, J. A. L., Moloney, B. J., & Dhand, N. K. (2012). The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (A/H3N8) outbreak. PLoS One, 7(4), e35284. https://doi.org/10.1371/ journal.pone.0035284
Gardner, E. G., Kelton, D., Poljak, Z., Van Kerkhove, M., Von Dobschuetz, S., & Greer, A. L. (2019). A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome. BMC Infectious Diseases, 19(1), 1-10. https://doi.org/10.1186/s12879-019-3729-5
Ghalhari, G. F., & Mayvaneh, F. (2016). Effect of air temperature and universal thermal climate index on respiratory diseases mortality in Mashhad, Iran. Archives of Iranian Medicine, 19(9), 0-0.
Gomez-Acebo, I., Llorca, J., & Dierssen, T. (2013). Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. Public Health, 127(3), 252-258. https://doi.org/ 10.1016/j.puhe.2012.12.014
Guionie, O., Courtillon, C., Allee, C., Maurel, S., Queguiner, M., & Eterradossi, N. (2013). An experimental study of the survival of turkey coronavirus at room temperature and+ 4 C. Avian Pathology, 42(3), 248-252. https://doi.org/10.1080/03079457.2013.779364
Guo X-J, Zhang H, Zeng Y-P. (2020). Transmissibility of COVID-19 and its Association with Temperature and Humidity. https://doi.org/ 10.21203/rs.3.rs-17715/v1
Hoffmann, B., Hertel, S., Boes, T., Weiland, D., & Jöckel, K. H. (2008). Increased cause-specific mortality associated with 2003 heat wave in Essen, Germany. Journal of Toxicology and Environmental Health, Part A, 71(11-12), 759-765.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., & Gu, X. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.
Killerby, M. E., Biggs, H. M., Haynes, A., Dahl, R. M., Mustaquim, D., Gerber, S. I., & Watson, J. T. (2018). Human coronavirus circulation in the United States 2014–2017. Journal of Clinical Virology, 101, 52-56.
Kim, H., Ha, J. S., & Park, J. (2006). High temperature, heat index, and mortality in 6 major cities in South Korea. Archives of Environmental & Occupational Health, 61(6), 265-270.
Kim, J., Shin, J., Lim, Y.-H., Honda, Y., Hashizume, M., Guo, Y. L., Kan, H., Yi, S., & Kim, H. (2016). Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia. Science of the Total Environment, 539, 313-321.
Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., & Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 368(6493), 860-868.
Lai, J., Ma, S., Wang, Y., Cai, Z., Hu, J., Wei, N., Wu, J., Du, H., Chen, T., & Li, R. (2020). Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Network Open, 3(3), e203976-e203976.
Lamarre, A., & Talbot, P. J. (1989). Effect of pH and temperature on the infectivity of human coronavirus 229E. Canadian Journal of Microbiology, 35(10), 972-974.
Li, M., Zhou, M., Yang, J., Yin, P., Wang, B., & Liu, Q. (2019). Temperature, temperature extremes, and cause-specific respiratory mortality in China: a multi-city time series analysis. Air Quality, Atmosphere & Health, 12(5), 539-548. https://doi.org/10.1007/s11869-019-00670-3
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 382, 1199–1207.
Lin, H., Tao, J., Kan, H., Qian, Z., Chen, A., Du, Y., ... & Ma, W. (2018). Ambient particulate matter air pollution associated with acute respiratory distress syndrome in Guangzhou, China. Journal of Exposure Science & Environmental Epidemiology, 28(4), 392-399. https://doi.org/ 10.1038/s41370-018-0034-0
Lin, K. U. N., Fong, D. Y. T., Zhu, B., & Karlberg, J. (2006). Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection. Epidemiology & Infection, 134(2), 223-230.
Liu, K., Hou, X., Ren, Z., Lowe, R., Wang, Y., Li, R., Liu, X., Sun, J., Lu, L., Song, X. (2020). Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China. Environmet Research, 183. 109190. https://doi.org/10.1016/j.envres.2020.109190
Liu, Z., Zhang, J., Zhang, Y., Lao, J., Liu, Y., Wang, H., & Jiang, B. (2019). Effects and interaction of meteorological factors on influenza: based on the surveillance data in Shaoyang, China. Environmental Research, 172, 326-332. https://doi.org/10.1016/j.envres.2019.01.053
Lowen, A., & Palese, P. (2009). Transmission of influenza virus in temperate zones is predominantly by aerosol, in the tropics by contact: A hypothesis. PLoS currents, 1, RRN1002.
Lu, F., Zhou, L., Xu, Y., Zheng, T., Guo, Y., Wellenius, G. A., Bassig, B. A., Chen, X., Wang, H., & Zheng, X. (2015). Short-term effects of air pollution on daily mortality and years of life lost in Nanjing, China. Science of the Total Environment, 536, 123-129.
Luo, W., Majumder, M., Liu, D., Poirier, C., Mandl, K., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. https://dash.harvard.edu/ handle/1/42639515
Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Yan, J., Niu, J., Zhou, J., & Luo, B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of the Total Environment, 724, 138226. https://doi.org/10.1016/j.scitotenv.2020. 138226
Macfarlane, A. (1977). Daily mortality and environment in English conurbations. Air pollution, low temperature, and influenza in Greater London. Journal of Epidemiology & Community Health, 31(1), 54-61. http://dx.doi.org/10.1136/jech.31.1.54
Martens, W. J. (1998). Climate change, thermal stress and mortality changes. Social Science & Medicine, 46(3), 331-344. https://doi.org/10.1016/S0277-9536(97)00162-7
Muggeo, V. M. (2008). Modeling temperature effects on mortality: multiple segmented relationships with common break points. Biostatistics, 9(4), 613-620.
National Command and Operation Center (http://covid.gov.pk/stats/punjab)
Pakistan Metreological Department. http://www.pmd.gov.pk/cdpc/ Pak%20Mean%20Temp
Peng, R. D., Dominici, F., & Louis, T. A. (2006). Model choice in time series studies of air pollution and mortality. Journal of the Royal Statistical Society: Series a (Statistics in Society), 169(2), 179-203. https://doi.org/10.1111/j.1467-985X.2006.00410.x
Poole, L. (2020). Seasonal influences on the spread of SARS-CoV-2 (COVID19), causality, and forecastabililty (3-15-2020). Causality, and Forecastabililty (3-15-2020) (March 15, 2020). https://papers.ssrn.com/ sol3/papers.cfm?abstract_id=3554746
Ren, C., Williams, G. M., Morawska, L., Mengersen, K., & Tong, S. (2008). Ozone modifies associations between temperature and cardiovascular mortality: Analysis of the NMMAPS data. Occupational and Environmental Medicine, 65(4), 255-260.
Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Network Open, 3(6), e2011834-e2011834.
Schwartz, J. (2000). The distributed lag between air pollution and daily deaths. Epidemiology, 11(3), 320-326.
Shaman, J., & Kohn, M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243-3248. https://doi.org/10.1073/ pnas.0806852106
Sharafkhani, R., Khanjani, N., Bakhtiari, B., Jahani, Y., Tabrizi, J. S., & Tabrizi, F. M. (2019). Diurnal temperature range and mortality in Tabriz (the northwest of Iran). Urban Climate, 27, 204-211.
Shephard, R. J., & Shek, P. N. (1998). Cold exposure and immune function. Canadian Journal of Physiology and Pharmacology, 76(9), 828-836.
Song, G., Chen, G., Jiang, L., Zhang, Y., Zhao, N., Chen, B., & Kan, H. (2008). Diurnal temperature range as a novel risk factor for COPD death. Respirology, 13(7), 1066-1069. https://doi.org/10.1111/j.1440-1843.2008.01401.x
Steel, J., Palese, P., & Lowen, A. C. (2011). Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain. Journal of Virology, 85(3), 1400-1402.
Talmoudi, K., Bellali, H., Ben-Alaya, N., Saez, M., Malouche, D., & Chahed, M. K. (2017). Modeling zoonotic cutaneous leishmaniasis incidence in central Tunisia from 2009-2015: Forecasting models using climate variables as predictors. PLoS Neglected Tropical Diseases, 11(8), e0005844. https://doi.org/10.1371/journal.pntd.0005844
Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., & Yin, J. (2005). An initial investigation of the association between the SARS outbreak and weather: With the view of the environmental temperature and its variation. Journal of Epidemiology & Community Health, 59(3), 186-192. http://dx.doi.org/10.1136/jech.2004.020180
Tosepu, R., Gunawan, J., Effendy, D. S., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of the total environment, 725, 138436.
Van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 20590.
Wallis, P., & Nerlich, B. (2005). Disease metaphors in new epidemics: the UK media framing of the 2003 SARS epidemic. Social Science & Medicine, 60(11), 2629-2639. https://doi.org/10.1016/j.socscimed. 2004.11.031
Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, C., Zheng, J., Li, C., Yang, B., & Zeng, J. (2020). Temperature significant change COVID-19 Transmission in 429 cities. Medrxiv. https://doi.org/10.1101/ 2020.02.22.20025791
WHO. (2020). WHO characterizes COVID-19 as a pandemic. https://www.who.int/
Wilder-Smith, A., Chiew, C. J., & Lee, V. J. (2020). Can we contain the COVID-19 outbreak with the same measures as for SARS?. The Lancet Infectious Diseases, 20(5), e102-e107.
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689-697. https://doi.org/10.1016/S0140-6736(20)30260-9
Wu, X., Lang, L., Ma, W., Song, T., Kang, M., He, J., ... & Ling, L. (2018). Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Science of the Total Environment, 628, 766-771. https://doi.org/10.1016/j.scitotenv.2018.02.136
Yanping, Z. (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liuxingbingxue zazhi, 41(2), 145.
Zhang Qiang, Y.X.-W., Ye, Dian-xiu, Xiao, Feng-jin, Cheng, Zheng-hong. (2004). Meteorological characteristics and their impacts during the SARS epidemic period. Journal Nanjing Institute Meteorol, 19, 849–855.
Zhou, Z. X., & Jiang, C. Q. (2004). Effect of environment and occupational hygiene factors of hospital infection on SARS outbreak. Zhonghua lao dong wei sheng zhi ye bing za zhi= Zhonghua laodong weisheng zhiyebing zazhi= Chinese Journal of Industrial Hygiene and Occupational Diseases, 22(4), 261-263.
Copyright (c) 2021 Sadaf Mubeen, MUHAMMAD HASSAM SHAHID, Hamid Haroon ur Rashid
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.