Fractal View and Thermal Behavior of Fractional Metallic Porous Fins in Response to Changing Convective Conditions

  • Hafiz Muhammad Younas Riphah International University, Pakistan
  • Muhammad Mohy-U-Din Liaqat Riphah International University, Pakistan
  • Shahzad Anjum Riphah International University, Pakistan
  • Emaan Afzal Riphah International University, Pakistan
  • Reha Salman Riphah International University, Pakistan
  • Sumbal Shahzadi Riphah International University, Pakistan
Keywords: convection, heat transfer, fractional analysis, Homotopy Perturbation Method (HPM), permeability, porous, thermal

Abstract

Abstract Views: 0

Porous, permeable, and structured fins enhance heat transfer due to their
thermophysical properties. Understanding the thermal gradients in these fins is critical for
a variety of engineering applications. This study applies the Homotopy Perturbation
Method (HPM) to nonlinear fractional differential equations describing porous fins,
focusing on factors such as porosity, permeability, and convection. Thermal analysis with
an insulated tip of a copper alloy reveals that porosity has the greatest impact on heat
transfer. The study highlights the effectiveness of HPM in analyzing these thermal
systems. The system's porosity is found to be more influential than any other factor.

Downloads

Download data is not yet available.

References

S. Saedodin and M. Shahbabaei, “Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM),” Arab. J. Sci. Eng., vol. 38, no. 8, pp. 2227–2231, Feb. 2013, doi: https://doi.org/10.1007/s13369-013-0581-6.

S. S. Chakrabarti, P. K. Das, and I. Ghosh, “RETRACTED: Thermal behavior of wet porous and solid fin–Experimental and analytical approach,” Int. J. Mech. Sci., vol. 149, pp. 112–121, Sep. 2018, doi: https://doi.org/10.1016/j.ijmecsci.2018.08.020.

B. M. Al-Srayyih, S. Gao, and S. H. Hussain, “Effects of linearly heated left wall on natural convection within a superposed cavity filled with composite nanofluid-porous layers,” Adv. Powder Technol., vol. 30, no. 1, pp. 55–72, Jan. 2019, doi: https://doi.org/10.1016/j.apt.2018.10.007.

P. Akbarzadeh and O. Mahian, “The onset of nanofluid natural convection inside a porous layer with rough boundaries,” J. Molecul. Liquid., vol. 272, pp. 344–352, Sep. 2018, doi: https://doi.org/10.1016/j.molliq.2018.09.074.

Y. Joo and S. J. Kim, “Thermal optimization of vertically oriented, internally finned tubes in natural convection,” Int. J. Heat Mass Trans., vol. 93, pp. 991–999, Feb. 2016, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.034.

M. Hatami, A. Hasanpour, and D. D. Ganji, “Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation,” Energy Convers. Manage., vol. 74, pp. 9–16, Oct. 2013, doi: https://doi.org/10.1016/j.enconman.2013.04.034.

S. E. Ghasemi, M. Hatami, and D. D. Ganji, “Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation,” Case Stud. Therm. Eng., vol. 4, pp. 1–8, Nov. 2014, doi: https://doi.org/10.1016/j.csite.2014.05.002.

R. Das, “Estimation of parameters in a fin with temperature-dependent thermal conductivity and radiation,” Proc. Institut. Mech. Eng. Part E J. Proc. Mech. Eng., vol. 230, no. 6, pp. 474–485, Mar. 2015, doi: https://doi.org/10.1177/0954408915575386.

S. Kiwan and M. A. Al-Nimr, “Using porous fins for heat transfer enhancement,” J. Heat Trans., vol. 123, no. 4, pp. 790–795, Jul. 2000, doi: https://doi.org/10.1115/1.1371922.

S. Kiwan, “Thermal analysis of natural convection porous fins,” Trans. Porous Media, vol. 67, no. 1, pp. 17–29, Oct. 2006, doi: https://doi.org/10.1007/s11242-006-0010-3.

A. -R. A. Khaled, “Investigation of heat transfer enhancement through permeable fins,” J. Heat Trans., vol. 132, no. 3, Dec. 2009, doi: https://doi.org/10.1115/1.4000056.

S. Kiwan and O. Zeitoun, “Natural convection in a horizontal cylindrical annulus using porous fins,” Int. J. Numer. Methods Heat Fluid Flow, vol. 18, no. 5, pp. 618–634, Jun. 2008, doi: https://doi.org/10.1108/09615530810879747.

M. G. Sobamowo, O. M. Kamiyo, and O. A. Adeleye, “Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation,” Therm. Sci. Eng. Prog., vol. 1, pp. 39–52, Mar. 2017, doi: https://doi.org/10.1016/j.tsep.2017.02.007.

M. Ghalambaz, E. Jamesahar, M. A. Ismael, and A. J. Chamkha, “Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity,” Int. J. Therm. Sci., vol. 111, pp. 256–273, Jan. 2017, doi: https://doi.org/10.1016/j.ijthermalsci.2016.09.001.

E. Cuce and P. M. Cuce, “A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins,” Energy Convers. Manage., vol. 93, pp. 92–99, Mar. 2015, doi: https://doi.org/10.1016/j.enconman.2015.01.003.

J. Ma, Y. Sun, B. Li, and H. Chen, “Spectral collocation method for radiative–conductive porous fin with temperature dependent properties,” Energy Convers. Manage., vol. 111, pp. 279–288, Jan. 2016, doi: https://doi.org/10.1016/j.enconman.2015.12.054.

A. Moradi, A. P. M. Fallah, T. Hayat, and O. M. Aldossary, “On solution of natural convection and radiation heat transfer problem in a moving porous Fin,” Arab. J. Sci. Eng., vol. 39, no. 2, pp. 1303–1312, Sep. 2013, doi: https://doi.org/10.1007/s13369-013-0708-9.

D. Bhanja, B. Kundu, and A. Aziz, “Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment,” Energy Convers. Manage., vol. 88, pp. 842–853, Dec. 2014, doi: https://doi.org/10.1016/j.enconman.2014.09.016.

M. Hatami, G. R. M. Ahangar, D. D. Ganji, and K. Boubaker, “Refrigeration efficiency analysis for fully wet semi-spherical porous fins,” Energy Convers. Manage., vol. 84, pp. 533–540, May 2014, doi: https://doi.org/10.1016/j.enconman.2014.05.007.

S. Roy, K. G. Schell, E. C. Bucharsky, K. A. Weidenmann, A. Wanner, and M. J. Hoffmann, “Processing and characterization of elastic and thermal expansion behaviour of interpenetrating Al12Si/alumina composites,” Mater. Sci. Eng., vol. 743, pp. 339–348, Nov. 2018, doi: https://doi.org/10.1016/j.msea.2018.11.100.

M. G. Sobamowo, O. M. Kamiyo, and O. A. Adeleye, “Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation,” Therm. Sci. Eng. Prog., vol. 1, pp. 39–52, Mar. 2017, doi: https://doi.org/10.1016/j.tsep.2017.02.007.

J. Ma, Y. Sun, and B. Li, “Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method,” Int. J. Therm. Sci., vol. 118, pp. 475–487, May 2017, doi: https://doi.org/10.1016/j.ijthermalsci.2017.05.008.

Y. Hirata, Y. Kinoshita, T. Shimonosono, and T. Chaen, “Theoretical and experimental analyses of thermal properties of porous polycrystalline mullite,” Ceram. Int., vol. 43, no. 13, pp. 9973–9978, May 2017, doi: https://doi.org/10.1016/j.ceramint.2017.05.009.

X.-L. Ouyang, R.-N. Xu, and P.-X. Jiang, “Three-equation local thermal non-equilibrium model for transient heat transfer in porous media: The internal thermal conduction effect in the solid phase,” Int. J. Heat Mass Trans., vol. 115, pp. 1113–1124, Aug. 2017, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.088.

L. Wang, Z. Zeng, L. Zhang, H. Xie, G. Liang, and Y. Lu, “A lattice Boltzmann model for thermal flows through porous media,” Appl. Therm. Eng., vol. 108, pp. 66–75, Jul. 2016, doi: https://doi.org/10.1016/j.applthermaleng.2016.07.092.

G. H. Tang, C. Bi, Y. Zhao, and W. Q. Tao, “Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook,” Energy, vol. 90, pp. 701–721, Oct. 2015, doi: https://doi.org/10.1016/j.energy.2015.07.109.

T. Ozgumus and M. Mobedi, “Effect of pore to throat size ratio on thermal dispersion in porous media,” Int. J. Therm. Sci., vol. 104, pp. 135–145, Feb. 2016, doi: https://doi.org/10.1016/j.ijthermalsci.2016.01.003.

X. Jin, L. Dong, Q. Li, H. Tang, N. Li, and Q. Qu, “Thermal shock cracking of porous ZrB 2 -SiC ceramics,” Ceram. Int., vol. 42, no. 11, pp. 13309–13313, May 2016, doi: https://doi.org/10.1016/j.ceramint.2016.05.040.

V. Marinca and N. Herişanu, “The optimal homotopy asymptotic method for solving blasius equation,” Appl. Math. Comput., vol. 231, pp. 134–139, Mar. 2014, doi: https://doi.org/10.1016/j.amc.2013.12.121.

L. Ali et al., “A new analytical approach for the research of thin‐film flow of magneto hydrodynamic fluid in the presence of thermal conductivity and variable viscosity,” ZAMM ‐ J. Appl. Math. Mecha., vol. 101, no. 2, Aug. 2020, doi: https://doi.org/10.1002/zamm.201900292.

M. H. Esfe, M. Bahiraei, H. Hajbarati, and M. Valadkhani, “A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics,” Appl. Therm. Eng., vol. 178, p. 115487, May 2020, doi: https://doi.org/10.1016/j.applthermaleng.2020.115487.

P. L. Ndlovu and R. J. Moitsheki, “Steady state heat transfer analysis in a rectangular moving porous fin,” Propul. Power Res., vol. 9, no. 2, pp. 188–196, Jun. 2020, doi: https://doi.org/10.1016/j.jppr.2020.03.002.

Z. Shah, E. Bonyah, S. Islam, and T. Gul, “Impact of thermal radiation on electrical MHD rotating flow of Carbon nanotubes over a stretching sheet,” AIP Adv., vol. 9, no. 1, Jan. 2019, doi: https://doi.org/10.1063/1.5048078.

Z. Shah, A. Dawar, S. Islam, I. Khan, and D. L. C. Ching, “Darcy-Forchheimer flow of radiative carbon nanotubes with microstructure and inertial characteristics in the rotating frame,” Case Stud. Therm. Eng., vol. 12, pp. 823–832, Sep. 2018, doi: https://doi.org/10.1016/j.csite.2018.09.007.

Z. Shah, A. Dawar, E. O. Alzahrani, P. Kumam, A. J. Khan, and S. Islam, “Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with Cattaneo Christov Heat Flux Model,” IEEE Access, vol. 7, pp. 64844–64855, Jan. 2019, doi: https://doi.org/10.1109/access.2019.2916162.

S. Nasir, Z. Shah, S. Islam, W. Khan, and S. N. Khan, “Radiative flow of magneto hydrodynamics single-walled carbon nanotube over a convectively heated stretchable rotating disk with velocity slip effect,” Adv. Mechan. Eng., vol. 11, no. 3, pp. 1–11, Mar. 2019, doi: https://doi.org/10.1177/1687814019827713.

S. Nasir, Z. Shah, S. Islam, E. Bonyah, and T. Gul, “Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet,” AIP Adv., vol. 9, no. 1, Jan. 2019, doi: https://doi.org/10.1063/1.5083972.

R. Kumar, R. Kumar, S. A. Shehzad, and A. J. Chamkha, “Optimal treatment of stratified Carreau and Casson nanofluids flows in Darcy-Forchheimer porous space over porous matrix,” Appl. Math. Mechan., vol. 41, no. 11, pp. 1651–1670, Sep. 2020, doi: https://doi.org/10.1007/s10483-020-2655-7.

R. Nawaz, Z. Hussain, A. Khattak, and A. Khan, “Extension of Optimal Homotopy Asymptotic Method with Use of Daftardar–Jeffery Polynomials to Coupled Nonlinear-Korteweg-De-Vries System,” Complexity, vol. 2020, pp. 1–6, Mar. 2020, doi: https://doi.org/10.1155/2020/6952709.

S. Iqbal, M. Idrees, A. M. Siddiqui, and A. R. Ansari, “Some solutions of the linear and nonlinear Klein–Gordon equations using the optimal homotopy asymptotic method,” Appl. Math. Comput., vol. 216, no. 10, pp. 2898–2909, Jul. 2010, doi: https://doi.org/10.1016/j.amc.2010.04.001.

S. Iqbal and A. Javed, “Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation,” Appl. Math. Comput., vol. 217, no. 19, pp. 7753–7761, Jun. 2011, doi: https://doi.org/10.1016/j.amc.2011.02.083.

Hashmi, N. Khan, and S. Iqbal, “Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method,” Comput. Math. Appl., vol. 64, no. 6, pp. 1567–1574, Sep. 2012, doi: https://doi.org/10.1016/j.camwa.2011.12.084.

Hashmi, N. Khan, and S. Iqbal, “Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind,” Appl. Math. Comput., vol. 218, no. 22, pp. 10982–10989, Jul. 2012, doi: https://doi.org/0.1016/j.amc.2012.04.059.

A. Javed, S. Iqbal, M. S. Hashmi, A. H. Dar, and N. Khan, “Semi-Analytical solutions of nonlinear problems of the deformation of beams and of the plate deflection theory using the optimal homotopy asymptotic method,” Heat Trans. Res., vol. 45, no. 7, pp. 603–620, Jan. 2014, doi: https://doi.org/10.1615/heattransres.2014007084.

H. M. Younas, S. Iqbal, I. Siddique, M. K. A. Kaabar, and M. Kaplan, “Dynamical investigation of time-fractional order Phi-4 equations,” Opt. Quant. Elect., vol. 54, no. 4, Mar. 2022, doi: https://doi.org/10.1007/s11082-022-03562-6.

M. Mustahsan, H. M. Younas, S. Iqbal, S. Rathore, K. S. Nisar, and J. Singh, “An efficient analytical technique for Time-Fractional parabolic partial differential equations,” Front. Phy., vol. 8, May 2020, doi: https://doi.org/10.3389/fphy.2020.00131

Published
2024-06-10
How to Cite
Younas, H. M., Liaqat, M. M.-U.-D., Anjum, S., Afzal , E., Salman, R., & Shahzadi, S. (2024). Fractal View and Thermal Behavior of Fractional Metallic Porous Fins in Response to Changing Convective Conditions. Innovative Computing Review, 4(1), 70–83. https://doi.org/10.32350/icr.41.05
Section
Articles