In-silico Analysis of Human miRNAs in SARS-CoV-2 Genome
Abstract
Abstract Views: 315In December2019, a new coronavirus(SARS-CoV-2) was discovered in Wuhan (China)that was rapidly transmittedto many other countries. Henceforth, the World Health Organization (WHO) Emergency Committee declared a global health emergency on January30, 2020. Statistics depictedthe fatality rate as about 1.4%. In this study, a potential antiviral treatment for the SARS-CoV-2 virus using host miRNAs was explored which may slow down the expression of viral genes to suppress viral replication.The miRNAsfrom genome (coronavirus/SARS-CoV-2) were analyzed using various computational approaches.The complete genome sequence was retrieved from NCBI. The result of our study highlighted that hsa-miR-3675-3p (MD19), hsa-miR-363-5p (MD220), hsa-miR-325 (MD306), hsa-miR-2114-5p (MD306), hsa-miR-744-3p (MR186) and hsa-miR-448 (MR186)can be used as an antiviral treatment to quell the replication of SARS-CoV-2virusin humanbeings.Thefindings and observations of our study openednew possibilitiesto explore both the pathogenesis function of miRNAsand for the development of novelantiviral drugs.
Keywords: genome, hybridization, In silico, miRNAs, SARS-CoV-2 Genome
Copyright (c) The Authors
Downloads
References
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207.
Zu ZY, Jiang M Di, Xu PP, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020;2020:200490. https://doi.org/10.1148/radiol.2020200490
Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020; 50: 563-570. https://doi.org/10.3906/sag-2004-172
Shu Y, He H, Shi X, Lei Y, Li J. Coronavirus disease 2019. World Acad Sci J. 2021;3(2):1-10. https://doi.org/10.3892/wasj.2021.83
Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020. https://doi.org/10.1016/j.ijid.2020.03.004
Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020;16(10):1678-1685. https://doi.org/10.7150/ijbs.45053
Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020;10(1):1-5. https://doi.org/10.1186/s13578-020-00404-4
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. 10.1016/S2213-2600(20)30076-X
Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. J Mol Bio. 2017;429(24):3875-92. https://doi.org/10.1016/j.jmb.2017.10.017
World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/grc-741313
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16(1):1-22. https://doi.org/10.1186/s12985-019-1182-0
Kuljić-Kapulica N, Budisin A. Coronaviruses. Srp Arh Celok Lek. 1992;120(7-8):215-218. https://doi.org/10.4161/rna.8.2.15013
McBride R, Van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6(8):2991-3018. https://doi.org/10.3390/v6082991
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-664. https://doi.org/10.1128/MMBR.69.4.527-543.2005
Shahul S,Tung A, Minhaj M, et al. 乳鼠心肌提取 HHS Public Access. Physiol Behav. 2017;176(10):139-148. https://doi.org/10.1016/j.physbeh.2017.03.040
Madhi A, Ghalyanchilangeroudi A, Soleimani M. Evidence of human coroanvirus (229E), in patients with respiratory infection, Iran, 2015: The first report. Iran J Microbiol. 2016;8(5):316-320.
Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236-240.
Ahn H, Weaver M, Lyon D, et al. Differences in clinical pain and experimental pain sensitivity between Asian Americans and whites with knee osteoarthritis. Clin J Pain. 2017 Feb;33(2):174. https://doi.org/10.1097/AJP.0000000000000378
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712. https://doi.org/10.3390/ijms17101712
Lin SL, Miller JD, Ying SY. Intronic microRNA (miRNA). J Biomed Biotechnol. 2006;2006:1-13. https://doi.org/10.1155/JBB/2006/26818
Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, et al. MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities. Front Oncol. 2019;9(December):1-24. https://doi.org/10.3389/fonc.2019.01404
Sierra H, Cordova M, Chen CS, Rajadhyaksha M. Confocal imaging-guided laser ablation of basal cell carcinomas: An ex vivo study. J Invest Dermatol. 2015 Feb;135(2):612-615.
Lee Y. Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051-60. https://doi.org/10.1038/sj.emboj.7600385
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016-3027. https://doi.org/10.1101/gad.1262504
Morlando M, Ballarino M, Gromak N, Pagano F. Europe PMC Funders Group Primary microRNA transcripts are processed co- transcriptionally. 2020;15(9):902-909. https://doi.org/10.1038/nsmb.1475
Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. Genomics, Proteomics Bioinforma. 2018;16(2):120-126. https://doi.org/10.1016/j.gpb.2017.09.004
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011-3016.
Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Trans Res. 2013;161(1):1-4.
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011 May 17;123(19):2145-56.
Skalsky RL, Cullen BR. Viruses, microRNAs, and Host Interactions. Annu Rev Microbiol. 2010;64(1):123-141. https://doi.org/10.1146/annurev.micro.112408.134243
Bernier A, Sagan SM. The diverse roles of microRNAs at the host–virus interface. Viruses. 2018;10(8):1-26. https://doi.org/10.3390/v10080440
Girardi E, López P, Pfeffer S. On the importance of host MicroRNAs during viral infection. Front Genet. 2018;9(OCT):1-17. https://doi.org/10.3389/fgene.2018.00439
Tempel S, Tahi F. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res. 2012;40(11):1-9. https://doi.org/10.1093/nar/gks146
Rahman G, Mian BA, Ullah N, Khan H, Khan S. An In-Silico Approach for the Prediction of miRNAs in Merkel Cell Polyoma Virus and its Target Genes. Adv Life Sci. 2018 Nov 25;6(1):41-47.
Shi J, Duan Z, Sun J, et al. Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J. 2014;11(1):1-14. https://doi.org/10.1186/1743-422X-11-121
Hossain MZ, Hasan MM, Debnath MK, Jackson AL, Akter R. Computational analysis to predict role of human microRNAs in Ebola virusgenome. Int J Eng Res Sci. 2018;4(9):1-7.
Hasan MM, Akter R, Ullah MS, Abedin MJ, Ullah GMA, Hossain MZ. A computational approach for predicting role of human micrornas in MERS-COV genome. Adv Bioinformat. 2014;2014. http://dx.doi.org/10.1155/2014/967946
Sam GJ, Harpreet KS, Stijn D, Anton JE. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:154-158. https://doi.org/10.1093/nar/gkm952
Krüger J, Rehmsmeier M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(WEB. SERV. ISS.):451-454. https://doi.org/10.1093/nar/gkl243
Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429-3431. https://doi.org/10.1093/nar/gkg599
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta - Mol Cell Res. 2010;1803(11):1231-1243. https://doi.org/10.1016/j.bbamcr.2010.06.013
Eulalio A, Huntzinger E, Izaurralde E. Getting to the Root of miRNA-Mediated Gene Silencing. Cell. 2008;132(1):9-14. https://doi.org/10.1016/j.cell.2007.12.024
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145-2154. https://doi.org/10.1104/pp.105.062943
Wardhani PA. 済無No Title No Title. Efikasi Diri dan Pemahaman Konsep IPA dengan Has Belajar Ilmu Pengetah Alam Siswa Sekol Dasar Negeri Kota Bengkulu. 2015;6.
Kume H, Hino K, Galipon J, Ui-Tei K. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Res. 2014;42(15):10050-60. https://doi.org/10.1093/nar/gku662
Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet. 2014;5(FEB):1-10. https://doi.org/10.3389/fgene.2014.00023
Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016;44(1):24-44. https://doi.org/10.1093/nar/gkv1221
Kehl T, Backes C, Kern F, et al. About miRNAs, miRNA seeds, target genes and target pathways. Oncotarget. 2017;8(63):107167-107175. https://doi.org/10.18632/oncotarget.22363
Zorc M, Jevsinek Skok D, Godnic I, et al. Catalog of microRNA seed polymorphisms in vertebrates. PloS One. 2012;7(1):e30737. https://doi.org/10.1371/journal.pone.0030737
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. https://doi.org/10.1016/j.cell.2004.12.035
Alam T, Lipovich L. miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery. Non-coding RNA. 2021;7(1):18. https://doi.org/10.3390/ncrna7010018
Fani M, Zandi M, Ebrahimi S, Soltani S, Abbasi S. The role of miRNAs in COVID-19 disease. Future Virol. March 2021:10.2217/fvl-2020-0389. https://doi.org/10.2217/fvl-2020-0389
Copyright (c) 2021 Syed Hassan Abbas, Muhammad Tariq Pervez, Amera Ramzan, Muhammad Xaaceph Khan
This work is licensed under a Creative Commons Attribution 4.0 International License.
BSR follows an open-access publishing policy and full text of all published articles is available free, immediately upon publication of an issue. The journal’s contents are published and distributed under the terms of the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Thus, the work submitted to the journal implies that it is original, unpublished work of the authors (neither published previously nor accepted/under consideration for publication elsewhere). On acceptance of a manuscript for publication, a corresponding author on the behalf of all co-authors of the manuscript will sign and submit a completed the Copyright and Author Consent Form.