In-silico Analysis of Human miRNAs in SARS-CoV-2 Genome

Keywords: In-silico, miRNAs, hybridization, genome

Abstract

Abstract Views: 315

In December2019, a new coronavirus(SARS-CoV-2) was discovered in Wuhan (China)that was rapidly transmittedto many other countries. Henceforth, the World Health Organization (WHO) Emergency Committee declared a global health emergency on January30, 2020. Statistics depictedthe fatality rate as about 1.4%. In this study, a potential antiviral treatment for the SARS-CoV-2 virus using host miRNAs was explored which may slow down the expression of viral genes to suppress viral replication.The miRNAsfrom genome (coronavirus/SARS-CoV-2) were analyzed using various computational approaches.The complete genome sequence was retrieved from NCBI. The result of our study highlighted that hsa-miR-3675-3p (MD19), hsa-miR-363-5p (MD220), hsa-miR-325 (MD306), hsa-miR-2114-5p (MD306), hsa-miR-744-3p (MR186) and hsa-miR-448 (MR186)can be used as an antiviral treatment to quell the replication of SARS-CoV-2virusin humanbeings.Thefindings and observations of our study openednew possibilitiesto explore both the pathogenesis function of miRNAsand for the development of novelantiviral drugs.

Keywords: genome, hybridization, In silico, miRNAs, SARS-CoV-2 Genome

Copyright (c) The Authors

Downloads

Download data is not yet available.

References

Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207.

Zu ZY, Jiang M Di, Xu PP, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020;2020:200490. https://doi.org/10.1148/radiol.2020200490

Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020; 50: 563-570. https://doi.org/10.3906/sag-2004-172

Shu Y, He H, Shi X, Lei Y, Li J. Coronavirus disease 2019. World Acad Sci J. 2021;3(2):1-10. https://doi.org/10.3892/wasj.2021.83

Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020. https://doi.org/10.1016/j.ijid.2020.03.004

Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020;16(10):1678-1685. https://doi.org/10.7150/ijbs.45053

Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020;10(1):1-5. https://doi.org/10.1186/s13578-020-00404-4

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. 10.1016/S2213-2600(20)30076-X

Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. J Mol Bio. 2017;429(24):3875-92. https://doi.org/10.1016/j.jmb.2017.10.017

World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/grc-741313

Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16(1):1-22. https://doi.org/10.1186/s12985-019-1182-0

Kuljić-Kapulica N, Budisin A. Coronaviruses. Srp Arh Celok Lek. 1992;120(7-8):215-218. https://doi.org/10.4161/rna.8.2.15013

McBride R, Van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6(8):2991-3018. https://doi.org/10.3390/v6082991

Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-664. https://doi.org/10.1128/MMBR.69.4.527-543.2005

Shahul S,Tung A, Minhaj M, et al. 乳鼠心肌提取 HHS Public Access. Physiol Behav. 2017;176(10):139-148. https://doi.org/10.1016/j.physbeh.2017.03.040

Madhi A, Ghalyanchilangeroudi A, Soleimani M. Evidence of human coroanvirus (229E), in patients with respiratory infection, Iran, 2015: The first report. Iran J Microbiol. 2016;8(5):316-320.

Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236-240.

Ahn H, Weaver M, Lyon D, et al. Differences in clinical pain and experimental pain sensitivity between Asian Americans and whites with knee osteoarthritis. Clin J Pain. 2017 Feb;33(2):174. https://doi.org/10.1097/AJP.0000000000000378

Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712. https://doi.org/10.3390/ijms17101712

Lin SL, Miller JD, Ying SY. Intronic microRNA (miRNA). J Biomed Biotechnol. 2006;2006:1-13. https://doi.org/10.1155/JBB/2006/26818

Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, et al. MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities. Front Oncol. 2019;9(December):1-24. https://doi.org/10.3389/fonc.2019.01404

Sierra H, Cordova M, Chen CS, Rajadhyaksha M. Confocal imaging-guided laser ablation of basal cell carcinomas: An ex vivo study. J Invest Dermatol. 2015 Feb;135(2):612-615.

Lee Y. Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051-60. https://doi.org/10.1038/sj.emboj.7600385

Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016-3027. https://doi.org/10.1101/gad.1262504

Morlando M, Ballarino M, Gromak N, Pagano F. Europe PMC Funders Group Primary microRNA transcripts are processed co- transcriptionally. 2020;15(9):902-909. https://doi.org/10.1038/nsmb.1475

Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. Genomics, Proteomics Bioinforma. 2018;16(2):120-126. https://doi.org/10.1016/j.gpb.2017.09.004

Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011-3016.

Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Trans Res. 2013;161(1):1-4.

Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011 May 17;123(19):2145-56.

Skalsky RL, Cullen BR. Viruses, microRNAs, and Host Interactions. Annu Rev Microbiol. 2010;64(1):123-141. https://doi.org/10.1146/annurev.micro.112408.134243

Bernier A, Sagan SM. The diverse roles of microRNAs at the host–virus interface. Viruses. 2018;10(8):1-26. https://doi.org/10.3390/v10080440

Girardi E, López P, Pfeffer S. On the importance of host MicroRNAs during viral infection. Front Genet. 2018;9(OCT):1-17. https://doi.org/10.3389/fgene.2018.00439

Tempel S, Tahi F. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res. 2012;40(11):1-9. https://doi.org/10.1093/nar/gks146

Rahman G, Mian BA, Ullah N, Khan H, Khan S. An In-Silico Approach for the Prediction of miRNAs in Merkel Cell Polyoma Virus and its Target Genes. Adv Life Sci. 2018 Nov 25;6(1):41-47.

Shi J, Duan Z, Sun J, et al. Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J. 2014;11(1):1-14. https://doi.org/10.1186/1743-422X-11-121

Hossain MZ, Hasan MM, Debnath MK, Jackson AL, Akter R. Computational analysis to predict role of human microRNAs in Ebola virusgenome. Int J Eng Res Sci. 2018;4(9):1-7.

Hasan MM, Akter R, Ullah MS, Abedin MJ, Ullah GMA, Hossain MZ. A computational approach for predicting role of human micrornas in MERS-COV genome. Adv Bioinformat. 2014;2014. http://dx.doi.org/10.1155/2014/967946

Sam GJ, Harpreet KS, Stijn D, Anton JE. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:154-158. https://doi.org/10.1093/nar/gkm952

Krüger J, Rehmsmeier M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(WEB. SERV. ISS.):451-454. https://doi.org/10.1093/nar/gkl243

Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429-3431. https://doi.org/10.1093/nar/gkg599

Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta - Mol Cell Res. 2010;1803(11):1231-1243. https://doi.org/10.1016/j.bbamcr.2010.06.013

Eulalio A, Huntzinger E, Izaurralde E. Getting to the Root of miRNA-Mediated Gene Silencing. Cell. 2008;132(1):9-14. https://doi.org/10.1016/j.cell.2007.12.024

Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145-2154. https://doi.org/10.1104/pp.105.062943

Wardhani PA. 済無No Title No Title. Efikasi Diri dan Pemahaman Konsep IPA dengan Has Belajar Ilmu Pengetah Alam Siswa Sekol Dasar Negeri Kota Bengkulu. 2015;6.

Kume H, Hino K, Galipon J, Ui-Tei K. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Res. 2014;42(15):10050-60. https://doi.org/10.1093/nar/gku662

Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet. 2014;5(FEB):1-10. https://doi.org/10.3389/fgene.2014.00023

Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016;44(1):24-44. https://doi.org/10.1093/nar/gkv1221

Kehl T, Backes C, Kern F, et al. About miRNAs, miRNA seeds, target genes and target pathways. Oncotarget. 2017;8(63):107167-107175. https://doi.org/10.18632/oncotarget.22363

Zorc M, Jevsinek Skok D, Godnic I, et al. Catalog of microRNA seed polymorphisms in vertebrates. PloS One. 2012;7(1):e30737. https://doi.org/10.1371/journal.pone.0030737

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. https://doi.org/10.1016/j.cell.2004.12.035

Alam T, Lipovich L. miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery. Non-coding RNA. 2021;7(1):18. https://doi.org/10.3390/ncrna7010018

Fani M, Zandi M, Ebrahimi S, Soltani S, Abbasi S. The role of miRNAs in COVID-19 disease. Future Virol. March 2021:10.2217/fvl-2020-0389. https://doi.org/10.2217/fvl-2020-0389

Published
2021-07-15
How to Cite
Abbas, S. H., Pervez, M. T., Ramzan, A., & Khan, M. X. (2021). In-silico Analysis of Human miRNAs in SARS-CoV-2 Genome. BioScientific Review, 3(2), 27-41. https://doi.org/10.32350/BSR.0302.03
Section
Research Articles