Selenium Resistant Bacilli and Pseudomonas as Potential Candidate for Selenium and Iron Biofortification in Maize Plants

  • Zain ul Abadin Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore-54590, Pakistan
  • Muhammad Faisal Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore-54590, Pakistan
Keywords: biofortification,, maize, plant growth promoting bacteria, selenium resistant bacteria

Abstract

Abstract Views: 277

Selenium is an essential element and is required in minute quantities for performing vital functions in living cells. Food is the ultimate source of selenium for animal and human populations. Crops, such as maize, which are used as food and feed, can be biofortified with selenium to alleviate selenium deficiency in both populations. The current study was conducted to isolate selenium-resistant bacteria from soil samples. Isolated bacteria were characterized on a morphological and biochemical basis. For specie level classification, 16S rRNA sequences were obtained. Isolated strains belonged to Bacillus halotolerans (TM3),Pseudomonas protegens (TM5), and Bacillus endophyticus (TM7). In-vitro PGPB characterization showed that some of the strains can produce IAA, Ammonia, HCN, and phosphate solubilization enzymes. Greenhouse pot experiments showed that the isolates enhanced seed germination rate, shoot length, and plant dry weight. Selenium supplementation caused decreased growth, but its effect was mitigated by the inoculation of isolated bacteria. Inoculation of these bacteria enhanced selenium content in maize leaves and shoots, ranging from 6-7%, while the addition of selenium to the soil increased selenium content by 300%. The iron content of maize leaves was also increased up to 17% in the inoculated strains.

Downloads

Download data is not yet available.

References

Chavatte L. Seleno-proteins. New York: Springer; 2018.

Suttle NF. Mineral nutrition of livestock. Cabi; 2010. DOI: https://doi.org/10.1079/9781845934729.0000

Camaschella C. Iron deficiency. Blood, Am J Hematol. 2019;133(1):3039. https://doi.org/10.1182/blood2018-05-815944 DOI: https://doi.org/10.1182/blood-2018-05-815944

Wysocka D., Snarska A., Sobiech P. Iron in cattle health. J Elem. 2020;25(3):1175-1185. https://doi.org/ 10.5601/jelem.2020.25.2.1960 DOI: https://doi.org/10.5601/jelem.2020.25.2.1960

Statista. Worldwide Production of Grain in 2020/21. https://www.statista. com/statistics/263977/world-grainproduction-by-type/.

Pakistan Go. Economic Survey of Pakistan, Ministry of food, Agriculture (Federal Bureau of Statistics), Islamabad. 2021:17-43. https://www. pc.gov.pk/uploads/cpec/PES_2020_21 .pdf

Lin Z-Q. Uptake and accumulation of selenium in plants in relation to chemical speciation and biotransformation. Development and uses of biofortified agricultural products. Boca Raton: CRC Press; 2008:63-74. DOI: https://doi.org/10.1201/9781420060065.ch3

Thavarajah P, Sarker A, Materne M, et al. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem. 2011;125(1):72-76. DOI: https://doi.org/10.1016/j.foodchem.2010.08.038

https://doi.org/10.1016/j.foodchem.20 10.08.038

Watts C, Aslam M, Gunaratna N, Shankar A, Groote HD, Sharp P. Agronomic Biofortification of maize with zinc fertilizers increases zinc uptake from maize flour by human intestinal caco-2 cells. Curr Dev Nutr. 2020;4(Supplement_2):1853-1853. https://doi.org/10.1093/cdn/nzaa067_ 080 DOI: https://doi.org/10.1093/cdn/nzaa067_080

Ngigi PB, Lachat C, Masinde PW, Du Laing G. Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ Geochem Health. 2019;41(6):25772591. https://doi.org/10.1007/s10653019-00309-3 DOI: https://doi.org/10.1007/s10653-019-00309-3

Maqbool MA, Aslam M, Beshir A, Khan MS. Breeding for provitamin A biofortification of maize (Zea mays L.). Plant Breed. 2018;137(4):451469.https://doi.org/10.1111/pbr.12618 DOI: https://doi.org/10.1111/pbr.12618

Kumar N, Salakinkop S. Agronomic biofortification of maize with zinc and iron micronutrients. Mod Concepts Dev Agron. 2018;1(5):2-5. DOI: https://doi.org/10.31031/MCDA.2018.01.000522

Shameer S, Prasad T. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 2018;84(3):603-615. https://doi.org/ 10.1007/s10725-017-0365-1 DOI: https://doi.org/10.1007/s10725-017-0365-1

Rahman M, Sabir AA, Mukta JA, et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep. 2018;8(1):1 DOI: https://doi.org/10.1038/s41598-018-20235-1

BioScientific Review Volume 4 Issue 1, 2022

Selenium Resistant Bacilli … 11. https://doi.org/10.1038/s41598018-20235-1

Sun Z, Yue Z, Liu H, Ma K, Li C. Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Fron Nutr. 2021;8:476. https://doi.org/10.3389/ fnut.2021.704030 DOI: https://doi.org/10.3389/fnut.2021.704030

Trivedi G, Patel P, Saraf M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. S Afr J Bot. 2020;134:27-35. https://doi.org/10.1016/j.sajb.2019.10. 001 DOI: https://doi.org/10.1016/j.sajb.2019.10.001

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425. https://doi.org/10.1093/oxfordjournals .molbev.a040454

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547. https://doi.org/10. 1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096

Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68(8):3795-3801. https://doi.org/ 10.1128/AEM.68.8.3795-3801.2002 DOI: https://doi.org/10.1128/AEM.68.8.3795-3801.2002

Gaur A. Phosphate solubilizing microorganisms as biofertilizer. Omega Scientific Publishers; 1990.

James C, Natalie S. Microbiology. A laboratory manual. Pearson Education; 2014.

Lorck H. Production of hydrocyanic acid by bacteria. Physiol Plant. 1948;1(2):142-146. https://doi.org/10. 1111/j.1399-3054.1948.tb07118.x DOI: https://doi.org/10.1111/j.1399-3054.1948.tb07118.x

Yasin M, El-Mehdawi AF, Pilon-Smits EA, Faisal M. Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation. 2015;17(8):777786. https://doi.org/10.1080/ 15226514.2014.987372 DOI: https://doi.org/10.1080/15226514.2014.987372

Mehdi Y, Dufrasne I. Selenium in cattle: a review. Mol. 2016;21(4):545. https://doi.org/10.3390/molecules210 40545 DOI: https://doi.org/10.3390/molecules21040545

Dokoupilová A, Marounek M, Skřivanová V, Březina P. Selenium content in tissues and meat quality in rabbits fed selenium yeast. Czech J Anim Sci. 2007;52(6):165-169. https://doi.org/10.17221/2319-CJAS DOI: https://doi.org/10.17221/2319-CJAS

Liu S, Sun H, Jose C, et al. Phenotypic blood glutathione concentration and selenium supplementation interactions on meat colour stability and fatty acid concentrations in Merino lambs Meat Sci. 2011;87(2):130-139. https://doi.org/10.1016/j.meatsci.2010 .09.011 DOI: https://doi.org/10.1016/j.meatsci.2010.09.011

Zuma MK, Kolanisi U, Modi AT. The potential of integrating provitamin Abiofortified maize in smallholder farming systems to reduce malnourishment in South Africa. Int J Environ Res. 2018;15(4):805. https://doi.org/10.3390/ijerph1504080 5 DOI: https://doi.org/10.3390/ijerph15040805

Gunaratna NS, Moges D, De Groote H. Biofortified maize can improve quality 56 Department of Life Sciences Volume 4 Issue 1, 2022

Zain ul Abadin and Muhammad Faisal

protein intakes among young children in southern Ethiopia. Nutr. 2019;11(1):192. https://doi.org/10. 3390/nu11010192 DOI: https://doi.org/10.3390/nu11010192

Alshehrei F. Production of polyhydroxybutyrate (PHB) by bacteria isolated from soil of Saudi Arabia. J Pure Appl Micro. 2019;13(2):897-904. https://dx.doi. org/10.22207/JPAM.13.2.26 DOI: https://doi.org/10.22207/JPAM.13.2.26

Zhang K, Xue Y, Xu H, Yao Y. Lead removal by phosphate solubilizing bacteria isolated from soil through biomineralization. Chemosphere. 2019;224:272-279. https://doi.org/ 10.1016/j.chemosphere.2019.02.140 DOI: https://doi.org/10.1016/j.chemosphere.2019.02.140

Yasmin R, Hussain S, Rasool MH, Siddique MH, Muzammil S. Isolation, characterization of Zn solubilizing bacterium (Pseudomonas protegens RY2) and its contribution in growth of chickpea (Cicer arietinum L) as deciphered by improved growth parameters and Zn content. DoseResponse. 2021;19(3):1-2. https://doi. org/10.1177/15593258211036791 DOI: https://doi.org/10.1177/15593258211036791

Zhang Z, Yin L, Li X, Zhang C, Liu C, Wu Z. The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought-and saltstressed rhizosphere soil. Microb Pathog. 2018;123:246-249. https://doi.org/10.1016/j.micpath.2018 .07.019 DOI: https://doi.org/10.1016/j.micpath.2018.07.019

Das R, Udayakumar P, Vaidyanathan R. A study on enhanced production of 3-demethylated colchicine by a novel strain of Bacillus endophyticus isolated from rhizospheric soils of Gloriosa superba. Biocatal Biotransformation. 2021;39(3):198 DOI: https://doi.org/10.1080/10242422.2020.1808628

https://doi.org/10.1080/ 10242422.2020.1808628

Ghosh A, Mohod AM, Paknikar KM, Jain RK. Isolation and characterization of selenite-and selenate-tolerant microorganisms from seleniumcontaminated sites. World J Microbiol Biotechnol. 2008;24(8):1607-1611. https://doi.org/10.1007/s11274-0079624-z DOI: https://doi.org/10.1007/s11274-007-9624-z

Lusa M, Help H, Honkanen A-P, et al. The reduction of selenium (IV) by boreal Pseudomonas sp. strain T5-6-I– Effects on selenium (IV) uptake in Brassica oleracea. Environ Res. 2019;177. https://doi.org/10.1016/ j.envres.2019.108642 DOI: https://doi.org/10.1016/j.envres.2019.108642

Wang D, Rensing C, Zheng S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. J Hazard Mater. 2022;421. https://doi.org/10.1016/ j.jhazmat.2021.126684 DOI: https://doi.org/10.1016/j.jhazmat.2021.126684

Khan MA, Asaf S, Khan AL, et al. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 2020;20(1):1-14. https://doi.org/10.1186/s12866-02001822-7 DOI: https://doi.org/10.1186/s12866-020-01822-7

Hashem A, Tabassum B, Abd_Allah EF. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019;26(6):1291-1297. https://doi.org/10.1016/j.sjbs.2019.05. 004 DOI: https://doi.org/10.1016/j.sjbs.2019.05.004

Chitara MK, Chauhan S, Singh RP. Bioremediation of Polluted Soil by Using Plant Growth–Promoting

BioScientific Review Volume 4 Issue 1, 2022 DOI: https://doi.org/10.37435/nbrvol4.issue1

Selenium Resistant Bacilli … Rhizobacteria. Microbial Rej of Pol Environ. Springer; 2021;25:203-226. https://doi.org/10.1007/978-981-157447-4_8

Zhang M, Yang L, Hao R, Bai X, Wang Y, Yu X. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil. 2020;452(1):423-440. https://doi.org/ 10.1007/s11104-020-04582-5 DOI: https://doi.org/10.1007/s11104-020-04582-5

Durán P, Acuña JJ, Jorquera MA, et al. Endophytic bacteria from seleniumsupplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils. 2014;50(6):983-990. https://doi.org/10.1007/s00374-0140920-0 DOI: https://doi.org/10.1007/s00374-014-0920-0

Kaur T, Vashisht A, Prakash NT, Reddy MS. Role of Selenium-Tolerant Fungi on Plant Growth Promotion and Selenium Accumulation of Maize Plants Grown in Seleniferous Soils. Water Air Soil Pollut. 2022;233(1):112. https://doi.org/10.1007/s11270021-05490-9 DOI: https://doi.org/10.1007/s11270-021-05490-9

Nakamaru YM, Altansuvd J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere. 2014;111:366-371. https://doi.org/10.1016/j.chemosphere .2014.04.024 DOI: https://doi.org/10.1016/j.chemosphere.2014.04.024

De Feudis M, D'Amato R, Businelli D, Guiducci M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci Total Environ.. 2019;659:131-139. https://doi.org/10.1016/j.scitotenv.201 8.12.200 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.200

Gupta M, Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci.. 2017;7:2074. https://doi.org/10.3389/ fpls.2016.02074 DOI: https://doi.org/10.3389/fpls.2016.02074

Chauhan R, Awasthi S, Tripathi P, et al. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol Environ Saf. 2017;138:47-55. https://doi.org/ 10.1016/j.ecoenv.2016.11.015 DOI: https://doi.org/10.1016/j.ecoenv.2016.11.015

Fang Y, Wang L, Xin Z, Zhao L, An X, Hu Q. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J Agric Food Chem. 2008;56(6):2079-2084. https://doi.org/10.1021/jf800150z DOI: https://doi.org/10.1021/jf800150z

Mishra PK, Bisht SC, Ruwari P, et al. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron

acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol. 2011;47(1):35-43. https://doi.org/10.1016/j.ejsobi.2010.1 1.005 DOI: https://doi.org/10.1016/j.ejsobi.2010.11.005

Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA. Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak J Bot. 2015;47(3):1191-1194.

Published
2022-03-17
How to Cite
Zain ul Abadin, & Faisal, M. (2022). Selenium Resistant Bacilli and Pseudomonas as Potential Candidate for Selenium and Iron Biofortification in Maize Plants. BioScientific Review, 4(1), 43-58. https://doi.org/10.32350/BSR.0401.03
Section
Research Articles