Development of the Tumor Diagnosis Application for Medical Practitioners using Transfer Learning
Abstract
Abstract Views: 181A brain tumor is the growth of abnormal cells in the tissues of brain. It affects a large number of people of different ages, worldwide. Magnetic Resonance Imaging (MRI) is the most operative and widely used technique for brain tumor detection because it provides better contrast images of the brain. However, the complexity of the problem, manual classification process, requirement of skilled medical practitioners, and a huge amount of MRI scan data are the major factors thwarting the timely classification of tumor vs. non-tumor. Early detection of brain tumors is possible by accurately applying machine learning with the aim to save time, cost, and human life. Recently, deep machine learning via transfer learning techniques was found to be highly effective for classification tasks. A tumor diagnosis application is presented with a VGG-19-based deep learning model by applying transfer learning of knowledge. Five-fold cross-validation of the model demonstrated 88% accuracy along with a 0.881 F1 score. The application could be utilized as a successful tool aid for oncologists and radiologists in the clinical diagnostics process.
Downloads
References
The Nation. Over 148,000 Pakistanis diagnosed with cancer annually. The Nation. February 4, 2018. https://nation.com.pk/2018/02/04/over-148-000-pakistanis-diagnosed-with-cancer-annually/
Gamage PT, Ranathunga DL. Identification of brain tumor using image processing techniques. Faculty of Information Technology, University of Moratuwa. 2017.
Kowar MK, & Yadav S. Brain tumor detection and segmentation using histogram thresholding. Int J Eng Adv Technol. 2012;1(4):16-20.
Patil RC, Bhalchandra AS. Brain tumour extraction from MRI images using MATLAB. Int J Electron Commun Soft Comput Sci Eng. 2012;2(1):1-4.
Karuna M, Joshi A. Automatic detection and severity analysis of brain tumors using gui in matlab. Int J Res Eng Technol. 2013;2(10):586-594. DOI: https://doi.org/10.15623/ijret.2013.0210092
Parameshwarappa V, Nandish S. A segmented morphological approach to detect tumour in brain images. Int J Adv Res Comput Sci Software Eng. 2014;4(1):408-412. DOI: https://doi.org/10.4103/2347-9019.130735
Karuppathal R, Palanisamy V. Fuzzy based automatic detection and classification approach for MRI-brain tumor. J Eng Appl Sci. 2014;9(12):42-52.
Janani V, Meena P. Image segmentation for tumor detection using fuzzy inference system. Int J Comput Sci Mobile Comput. 2013;2(5):244-248.
Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2014;34(10):1993-2024. https://doi.org/10.1109/TMI.2014.2377694 DOI: https://doi.org/10.1109/TMI.2014.2377694
Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014);19(6):578-595. https://doi.org/10.1109/TST.2014.6961028 DOI: https://doi.org/10.1109/TST.2014.6961028
Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q. Brain tumor segmentation based on local independent projection-based classification. IEEE Trans Biomed Eng. 2014;61(10):2633-2645. https://doi.org/10.1109/TBME.2014.2325410 DOI: https://doi.org/10.1109/TBME.2014.2325410
Bauer S, May C, Dionysiou D, Stamatakos G, Buchler P, Reyes M. Multiscale modeling for image analysis of brain tumor studies. IEEE Trans Biomed Eng. 2011;59(1):25-29. https://doi.org/10.1109/TBME.2011.2163406 DOI: https://doi.org/10.1109/TBME.2011.2163406
Damodharan S, Raghavan D. Combining tissue segmentation and neural network for brain tumor detection. Int Arab Journal Info Technol. 2015;12(1):42-52.
Alfonse M, Salem ABM. An automatic classification of brain tumors through MRI using support vector machine. Egy. Comp. Sci. J. 2016;40(3):11-21.
Kumar P, Vijayakumar B. Brain tumour Mr image segmentation and classification using by PCA and RBF kernel based support vector machine. Middle East J Sci Res. 2015;23(9):2106-2116.
Chaddad A. Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. Intl J Biomed Imag. 2015;2015:e868031. https://doi.org/10.1155/2015/868031 DOI: https://doi.org/10.1155/2015/868031
Deepa SN, Arunadevi B. Extreme learning machine for classification of brain tumor in 3D MR images. Informatologia. 2013;46(2):111-121.
Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja C. K. Segmentation, feature extraction, and multiclass brain tumor classification. J Digi Imaging. 2013;26(6):1141–1150. https://doi.org/10.1007/s10278-013-9600-0 DOI: https://doi.org/10.1007/s10278-013-9600-0
Al-Badarneh A, Najadat H, Alraziqi A. M. A classifier to detect tumor disease in MRI brain images. Paper presented at: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; August 26-29, 2012; Istanbul, Turkey. https://ieeexplore.ieee.org/abstract/document/6425665 DOI: https://doi.org/10.1109/ASONAM.2012.142
Afshar P, Plataniotis KN, Mohammadi A. Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. Paper presented at: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); May 12-17, 2019; Brighton, UK. https://ieeexplore.ieee.org/abstract/document/8683759 DOI: https://doi.org/10.1109/ICASSP.2019.8683759
Byrne, J.; Dwivedi, R.; Minks, D. Tumours of the brain. In: Nicholson T, ed. Recommendations Cross Sectional Imaging Cancer Management. 2nd ed. Royal College of Radiologists; 2014:1–20.
Center for Biomedical Image Computing & Analytics (CBICA). RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021. 22. CBICA. Accessed 5 November 5, 2019. http://braintumorsegmentation.org/
Mlynarski P, Delingette H, Criminisi A, Ayache N. Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging. 2019;6(3):e034002. https://doi.org/10.1117/1.JMI.6.3.034002 DOI: https://doi.org/10.1117/1.JMI.6.3.034002
Amin J, Sharif M, Yasmin M, Fernandes SL. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Gener Comput Syst. 2018;87:290-297. https://doi.org/10.1016/j.future.2018.04.065 DOI: https://doi.org/10.1016/j.future.2018.04.065
Amin J, Sharif M, Raza M, Yasmin M. Detection of brain tumor based on features fusion and machine learning. J Ambient Intell Humaniz Comput. 2018;1-17. https://doi.org/10.1007/s12652-018-1092-9 DOI: https://doi.org/10.1007/s12652-018-1092-9
Usman K, Rajpoot K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Appl. 2017;20(3):871-881. https://doi.org/10.1007/s10044-017-0597-8 DOI: https://doi.org/10.1007/s10044-017-0597-8
Pereira S, Meier R, Alves V, Reyes M, Silva CA. Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. Paper presented at: Understanding and interpreting machine learning in medical image computing applications; September 16-20, 2018; Cham, Switzerland. https://link.springer.com/chapter/10.1007/978-3-030-02628-8_12#citeas DOI: https://doi.org/10.1007/978-3-030-02628-8_12
Farhi L, Zia R, Ali Z. A. 5 Performance Analysis of Machine Learning Classifiers for Brain Tumor MR Images. Sir Syed Uni Res J Eng Technol. 2018;8(1):6-6. DOI: https://doi.org/10.33317/ssurj.v8i1.36
Vijh, S., Sharma, S., & Gaurav, P. Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method and convolutional neural network. In: Hemanth J, Bhatia M, Geman Oana, eds. Data visualization and knowledge engineering. Springer; 2020:171-194. DOI: https://doi.org/10.1007/978-3-030-25797-2_8
Mohsen H, El-Dahshan ESA, El-Horbaty ESM, Salem ABM. Classification using deep learning neural networks for brain tumors. Future Gener Comput Syst. 2018;3(1):68-71. https://doi.org/10.1016/j.fcij.2017.12.001 DOI: https://doi.org/10.1016/j.fcij.2017.12.001
Veeraraghavan A, Roy-Chowdhury AK, Chellappa R. Matching shape sequences in video with applications in human movement analysis. IEEE Trans Pattern Anal Mach Intell. 2005;27(12):1896-1909. https://doi.org/10.1109/TPAMI.2005.246 DOI: https://doi.org/10.1109/TPAMI.2005.246
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging. 2017;30(4):449-459. https://doi.org/10.1007/s10278-017-9983-4 DOI: https://doi.org/10.1007/s10278-017-9983-4
Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z. Feng Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one. 2015;10(10):e0140381. https://doi.org/10.1371/journal.pone.0144479 DOI: https://doi.org/10.1371/journal.pone.0140381
Cheng J. Brain tumor dataset. figshare. Dataset. Accessed July 5, 2020. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
Math Works. vgg19. Math Works. 2019. https://www.mathworks.com/help/deeplearning/ref/vgg19.html
Ali MM, Hamid M, Saleem M, et al. Status of bioinformatics education in South Asia: past and present. Bimed Res Int. 2021;2021:e5568262. https://doi.org/10.1155/2021/5568262 DOI: https://doi.org/10.1155/2021/5568262
Noreen I, Hamid M, Akram U, Malik S, Saleem M. Hand Pose Recognition Using Parallel Multi Stream CNN. Sensors. 2021;21(24):8469. https://doi.org/10.3390/s21248469 DOI: https://doi.org/10.3390/s21248469
Simonyan Z, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 2014;1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Wong, T. T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015;48(9):2839-2846. https://doi.org/10.1016/j.patcog.2015.03.009 DOI: https://doi.org/10.1016/j.patcog.2015.03.009
Copyright (c) 2022 Nadeem Sarwar, Iram Noreen, Asma Irshad
This work is licensed under a Creative Commons Attribution 4.0 International License.
BSR follows an open-access publishing policy and full text of all published articles is available free, immediately upon publication of an issue. The journal’s contents are published and distributed under the terms of the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Thus, the work submitted to the journal implies that it is original, unpublished work of the authors (neither published previously nor accepted/under consideration for publication elsewhere). On acceptance of a manuscript for publication, a corresponding author on the behalf of all co-authors of the manuscript will sign and submit a completed the Copyright and Author Consent Form.