Endophytic Microbial Community and its Potential Applications: A Review

  • Muddasir Khan University of Peshawar, Pakistan
  • Syed Hussain Shah Abasyn University, Peshawar, Pakistan
  • Fawad Hayat University of Peshawar, Pakistan
  • Sajeela Akbar University of Peshawar, Pakistan
Keywords: anticancer, antimicrobial, antioxidant, antiviral, endophytes, medicinal plants

Abstract

Abstract Views: 0

Endophytes are present in all plant species across the world. They assist their hosts by producing several chemicals/metabolites that provide protection and, ultimately, survival value to their host plants. In various studies, endophytes have been demonstrated to be a new and potential source of novel natural chemicals for application in modern medicine, agriculture, and industry. Endophytes have developed a variety of natural chemicals that include antibacterial, antifungal, antiviral, anticancer, antiparasitic, cytotoxic, antidiabetic, immunosuppressive, antitubercular, anti-inflammatory, and antioxidants. These chemicals are involved in biodegradation and biofertilizers that promote the growth of plants. Screening these endophytic metabolites is regarded as a promising technique to combat drug-resistant human and plant disease strains. In this review, the basic concept of endophytes, the variety of endophytic microbiome, as well as the application of endophytes are presented. This knowledge may be used to extract improved bioactive compounds from endophytes and may serve as a foundation for future research.

Downloads

Download data is not yet available.

References

Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014:1–11. https://doi.org/10.1155 /2014/250693

Suman A, Yadav AN, Verma P. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R, eds. Microbial Inoculants in Sustainable Agricultural Productivity. Springer Publishing; 2016:117–143.

Poveda J, Eugui D, Abril-Urías P, Velasco P. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis. 2021;85(1):1–9. https://doi.org/10. 1007/s13199-021-00789-x

Adeleke BS, Babalola OO. Biotechnological overview of agriculturally important endophytic fungi. Horticul Environ Biotech. 2021;62:507–520. https://doi.org/10. 1007/s13580-021-00334-1

Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances. Biores Technol. 2021;339:e125589. https://doi.org/10.1016/j.biortech.2021.125589

Buddhika UA, Abeysinghe S. Plant endophytic microorganisms enhancing crop productivity and yield. New Futr Dev Microbial Biotechnol Bioeng. 2021;1:45–53. https://doi.org/10.1016/ B978-0-444-64325-4.00005-5

Banyal A, Thakur V, Thakur R, Kumar P. Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics. Current Microbiol. 2021;78:1699–1717. https://doi.org/ 10.1007/s00284-021-02359-2

Renugadevi R, Ayyappadas MP, Priya VS, Shobana MF, Vivekanandhan K. Applications of bacterial endophytes and their advanced identification methodologies. J Appl Biol Biotech. 2021;9(6):51–55. http://dx.doi.org/10. 7324/JABB.2021.9606

Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, Garrido C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol Agent against Botrytis cinerea. Biology. 2021;10(6):e492. https://doi.org/10.3390/biology10060492

Wu W, Chen W, Liu S, et al. Beneficial relationships between endophytic bacteria and medicinal plants. Front Plant Sci. 2021;12:e646146. https:// doi.org/10.3389/fpls.2021.646146

Taulé C, Vaz-Jauri P, Battistoni F. Insights into the early stages of plant–endophytic bacteria interaction. World J Microbiol Biotech. 2021;37:1–9. https://doi.org/10.1007/s11274-020-02966-4

Nifakos K, Tsalgatidou PC, Thomloudi EE, et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes. Plants. 2021;10(8):e1716. https://doi.org/ 10.3390/plants10081716

Iqrar I, Numan M, Khan T, Shinwari ZK, Ali GS. LC–MS/MS-based profiling of bioactive metabolites of endophytic bacteria from cannabis sativa and their anti-phytophthora activity. Ant van Leeuwen. 2021;114:1165–1179. https://doi.org/ 10.1007/s10482-021-01586-8

Zhao J, Wang S, Zhu X, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Appl Soil Ecol. 2021;164:e103924. https://doi.org/10. 1016/j.apsoil.2021.103924

Mahdi I, Hafidi M, Allaoui A, Biskri L. Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination. Agriculture. 2021;11(3):e224. https://doi.org/10. 3390/agriculture11030224

Lipková N, Medo J, Artimová R, et al. Growth promotion of rapeseed (Brassica napus L.) and blackleg disease (Leptosphaeria maculans) suppression mediated by endophytic bacteria. Agronomy. 2021;11(10):e1966. https://doi.org/1 0.3390/agronomy11101966

Khan AA, Wang T, Hussain T, et al. Halotolerant Koccuria rhizophila (14asp) induced amendment of salt stress in pea plants by limiting Na+ uptake and elevating production of antioxidants. Agronomy. 2021;11(10):e1907. https://doi.org/ 10.3390/agronomy11101907

Hwang HH, Chien PR, Huang FC, et al. A plant endophytic bacterium, Burkholderia seminalis Strain 869T2, promotes plant growth in Arabidopsis, Pak Choi, Chinese amaranth, Lettuces, and other vegetables. Microorganisms. 2021;9(8):e1703. https://doi.org/10. 3390/microorganisms9081703

Xu W, Zhang L, Goodwin PH, et al. Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Front Microbiol. 2020;11:e598285. https://doi.org/10. 3389/fmicb.2020.598285

Nguyen SD, Trinh TH, Tran TD, et al. Combined application of rhizosphere bacteria with endophytic bacteria suppresses root diseases and increases productivity of black pepper (Piper nigrum L.). Agriculture. 2021;11(1):e15. https://doi.org/10. 3390/agriculture11010015

Jiménez-Gómez A, Saati-Santamaría Z, Kostovcik M, et al. Selection of the root endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. Crops. Agronomy. 2020;10(11):e1788. https://doi.org/10.3390/agronomy10111788

Zhao H, Chen X, Chen X, et al. New peptidendrocins and anticancer chartreusin from an endophytic bacterium of Dendrobium officinale. Annals Transl Med. 2020;8:e455. https://doi.org/10.21037%2Fatm.2020.03.227

Rustamova N, Bobakulov K, Begmatov N, Turak A, Yili A, Aisa HA. Secondary metabolites produced by endophytic Pantoea ananatis derived from roots of Baccharoides anthelmintica and their effect on melanin synthesis in murine B16 cells. Nat Prod Res. 2021;35(5):796–801. https://doi.org/10.1080/14786419.2019.1597354

Cheffi M, Chenari BA, Alenezi FN, et al. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms. 2019;7(9):e314. https://doi.org/10. 3390/microorganisms7090314

Mohamad OA, Li L, Ma JB, et al. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against verticillium dahliae. Front Microbiol. 2018;9:e924. https://doi. org/10.3389/fmicb.2018.00924

Selim HM, Gomaa NM, Essa AM. Application of endophytic bacteria for the biocontrol of rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol. 2017;27(1):81–95. https://doi.org/ 10.1080/09583157.2016.1258452

Dhanya KI, Swati VI, Vanka KS, Osborne WJ. Antimicrobial activity of Ulva reticulata and its endophytes. J Ocean Univ China. 2016;15(2):363–369. https://doi.org/10.1007/s11802-016-2803-7

Rana KL, Kour D, Sheikh I, et al. Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A, eds. Recent advancement in White Biotechnology Through Fungi. Springer; 2019:1–62.

Jouda JB, Mbazoa CD, Sarkar P, Bag PK, Wandji J. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant gram-negative bacteria. Afri Health Sci. 2016;16(3):734–743. https://doi.org/10.4314/ahs.v16i3.13

Elsayed HE, Kamel RA, Ibrahim RR, et al. Cytotoxicity, antimicrobial, and in silico studies of secondary metabolites from Aspergillus sp. isolated from Tecoma stans (L.) Juss. Ex Kunth Leaves. Front Chem. 2021;9:e760083. https://doi.org/10. 3389/fchem.2021.760083

Polli AD, Ribeiro MA, Garcia A, et al. Secondary metabolites of Curvularia sp. G6-32, an endophyte of Sapindus saponaria, with antioxidant and anticholinesterasic properties. Nat Prod Res. 2021;35(21):4148–4153. https://doi.org/10.1080/14786419.2020.1739681

Soni SK, Singh R, Ngpoore NK, et al. Isolation and characterization of endophytic fungi having plant growth promotion traits that biosynthesizes bacosides and with anolides under in vitro conditions. Braz J Microbiol. 2021;52:1791–1805. https://doi.org/ 10.1007/s42770-021-00586-0

Silva AA, Polonio JC, Bulla AM, et al. Antimicrobial and antioxidant activities of secondary metabolites from endophytic fungus Botryosphaeria fabicerciana (MGN23-3) associated to Morus nigra L. Nat Prod Res. 2021;36(12):3158–3162. https://doi.org/10.1080/14786419.2021.1947272

Rodrigo S, García-Latorre C, Santamaria O. Metabolites produced by fungi against fungal phytopathogens: review, implementation and perspectives. Plants. 2022;11(1):e81. https://doi. org/10.3390/plants11010081

Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis. 2019;77:225–235. https://doi.org/10.1007/s13199-018-0583-y

Manganyi MC, Regnier T, Tchatchouang CD, Bezuidenhout CC, Ateba CN. Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Ann Microbiol. 2019;69:659–663. https://doi.org/10.1007/s13213-019-1444-5

Wen S, Fan W, Guo H, Huang C, Yan Z, Long Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat Prod Res. 2020;34(20):2919–2925. https://doi. org/10.1080/14786419.2019.1598993

Manganyi MC, Tchatchouang CD, Regnier T, Bezuidenhout CC, Ateba CN. Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology. 2019;47(3):335–339. https://doi.org/10.1080/12298093.2019.1631121

Ma H, Wang F, Jin X, et al. A new diketopiperazine from an endophytic fungus Aspergillus aculeatus F027. Nat Prod Res. 2021;35(14):2370–2375. https://doi.org/10.1080/ 14786419.2019.1677652

Pansanit A, Pripdeevech P. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology. 2018;9(4):264–272. https://doi.org/10.1080/21501203.2018.1481154

Lubna, Asaf S, Hamayun M, Gul H, Lee IJ, Hussain A. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indole acetic acid. J Plant Inter. 2018;13(1):100–111. https://doi.org/ 10.1080/17429145.2018.1436199

El-Hawary SS, Sayed AM, Rateb ME, Bakeer W, AbouZid SF, Mohammed R. Secondary metabolites from fungal endophytes of Solanum nigrum. Nat Prod Res. 2017;31(21):2568–2571. https://doi.org/10.1080/14786419.2017.1327859

Liu HX, Tan HB, Chen YC, Li SN, Li HH, Zhang WM. Secondary metabolites from the Colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat Prod Res. 2018;32(19):2360–2365. https://doi.org/10.1080/14786419.2017.1410810

Jin Z, Gao L, Zhang L, et al. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Nat Prod Res. 2017;31(22):2700–2703. https://doi.org/10.1080/14786419.2017.1292265

Mishra VK, Passari AK, Chandra P, et al. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLOS ONE. 2017;17(5):e0268371. https://doi.org/10.1371/journal.pone.0186234

Zhang L, Niaz SI, Wang Z, et al. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat Prod Res. 2018;32(24):2887–2892.https://doi.org/10.1080/14786419.2017.1385023

Jouda JB, Fopossi JL, Kengne FM, et al. Secondary metabolites from Aspergillus japonicus CAM231, an endophytic fungus associated with Garcinia preussii. Nat Prod Res. 2017;31(8):861–869. https://doi.org /10.1080/14786419.2016.1250089

Aamir M, Rai KK, Zehra A, et al. Endophytic actinomycetes in bioactive compounds production and plant defense system. Microbial Endophytes. 2020;1:189–229. https://doi.org/10.1016/B978-0-12-818734-0.00009-7

Salem SS, El-Belely EF, Niedbała G, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials. 2020;10(10):e2082. https://doi.org/10.3390/nano10102082

Phạm HT, Suwannapan W, Koomsiri W, et al. Fodinicola acaciae sp. nov., an endophytic actinomycete isolated from the roots of Acacia mangium willd and its genome analysis. Microorganisms. 2020;8(4):e467. https://doi.org/10.3390/microorganisms8040467

Cao P, Li C, Wang H, et al. Community structures and antifungal activity of root-associated endophytic actinobacteria in healthy and diseased cucumber plants and Streptomyces sp. HAAG3-15 as a promising biocontrol agent. Microorganisms. 2020;8(2): e236. https://doi.org/10.3390/ microorganisms8020236

Htwe AZ, Moh SM, Soe KM, Moe K, Yamakawa T. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy. 2019;9(2):e77. https:// doi.org/10.3390/agronomy9020077

Yang R, Yang J, Wang L, et al. Lorneic acid analogues from an endophytic actinomycete. J Nat Prod. 2017;80(10):2615–2619. https://doi. org/10.1021/acs.jnatprod.7b00056

Rajivgandhi G, Vijayan R, Kannan M, Santhanakrishnan M, Manoharan N. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioactive Materials. 2016;1(2):140–150. https://doi.org/10.1016/ j.bioactmat.2016.11.002

Noriler SA, Savi DC, Ponomareva LV, et al. Vochysiamides A and B: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia. 2019;138:e104273. https://doi.org/ 10.1016/j.fitote.2019.104273

Silva FD, Liotti RG, Boleti AP, et al. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLOS ONE. 2018;13(4):e0195874. https://doi.org/10.1371/journal.pone.0195874

Uche-Okereafor N, Sebola T, Tapfuma K, Mekuto L, Green E, Mavumengwana V. Antibacterial activities of crude secondary metabolite extracts from Pantoea species obtained from the stem of Solanum mauritianum and their effects on two cancer cell lines. Inter J Environ Res Pub Health. 2019;16(4):e602. https://doi.org/ 10.3390/ijerph16040602

Supaphon P, Preedanon S. Evaluation of in vitro alpha-glucosidase inhibitory, antimicrobial, and cytotoxic activities of secondary metabolites from the endophytic fungus, Nigrospora sphaerica, isolated from Helianthus annuus. Ann Microbiol. 2019;69:1397–1406. https://doi.org/10.1007/s13213-019-01523-1

Gos FM, Savi DC, Shaaban KA, et al. Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil). Front Microbiol. 2017;8:e1642. https://doi.org/10.3389/ fmicb.2017.01642

González-Menéndez V, Crespo G, De Pedro N, et al. Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents. Sci Rep. 2018;8:e12085. https://doi.org/10.1038/s41598-018-30157-7

Kalyanasundaram I, Nagamuthu J, Muthukumaraswamy S. Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. J Microbiol Antimicro. 2015;7(2):13–20. https://doi.org/ 10.5897/JMA2014.0334

Selim KA, Elkhateeb WA, Tawila AM, et al. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation. 2018;4(3):e49. https://doi.org/10.3390/fermentation4030049

Adeleke BS, Babalola OO. Pharmacological potential of fungal endophytes associated with medicinal plants: a review. J Fungi. 2021;7(2):e147. https://doi.org/10.3390/jof7020147

Farooq T, Hameed A, Rehman K, Ibrahim M, Qadir MI, Akash MS. Anti-retroviral agents: looking for the best possible chemotherapeutic options to conquer HIV. Crit Rev Eukaryot Gene Expr. 2016;26(4):363–381. https://doi.org/10.1615/critreveukaryotgeneexpr.2016018255

Raekiansyah M, Mori M, Nonaka K, et al. Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses. Trop Med Health. 2017;45:e32. https://doi.org/10.1186/s41182-017-0072-7

Gunasekaran S, Sundaramoorthy S, Anitha U, Sathiavelu M, Arunachalam S. Endophytic fungi with antioxidant activity-a review. Res J Pharm Technol. 2015;8(6):731–737. http://dx.doi.org/10.5958/0974-360X.2015.00116.X

Toghueo RM, Boyom FF. Endophytes from ethno-pharmacological plants: Sources of novel antioxidants-A systematic review. Biocatal Agricult Biotechnol. 2019;22:e101430. https://doi.org/10.1016/j.bcab.2019.101430

Fill TP, Silva BF, Rodrigues-Fo E. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J Microbiol Biotechnol. 2010;20(3):622–629. https://doi.org/10.4014/jmb.0908.08018

Wang LW, Wang JL, Chen J, et al. A novel derivative of (-) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front Microbiol. 2017;8:e1251. https://doi.org/10.3389/fmicb.2017.01251

Published
2023-12-06
How to Cite
Khan, M., Shah, S. H., Hayat, F., & Akbar, S. (2023). Endophytic Microbial Community and its Potential Applications: A Review. BioScientific Review, 5(3), 82-98. https://doi.org/10.32350/BSR.53.08
Section
Review Article