Endophytic Microbial Community and its Potential Applications: A Review
Abstract
Abstract Views: 0Endophytes are present in all plant species across the world. They assist their hosts by producing several chemicals/metabolites that provide protection and, ultimately, survival value to their host plants. In various studies, endophytes have been demonstrated to be a new and potential source of novel natural chemicals for application in modern medicine, agriculture, and industry. Endophytes have developed a variety of natural chemicals that include antibacterial, antifungal, antiviral, anticancer, antiparasitic, cytotoxic, antidiabetic, immunosuppressive, antitubercular, anti-inflammatory, and antioxidants. These chemicals are involved in biodegradation and biofertilizers that promote the growth of plants. Screening these endophytic metabolites is regarded as a promising technique to combat drug-resistant human and plant disease strains. In this review, the basic concept of endophytes, the variety of endophytic microbiome, as well as the application of endophytes are presented. This knowledge may be used to extract improved bioactive compounds from endophytes and may serve as a foundation for future research.
Downloads
References
Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014:1–11. https://doi.org/10.1155 /2014/250693
Suman A, Yadav AN, Verma P. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R, eds. Microbial Inoculants in Sustainable Agricultural Productivity. Springer Publishing; 2016:117–143.
Poveda J, Eugui D, Abril-Urías P, Velasco P. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis. 2021;85(1):1–9. https://doi.org/10. 1007/s13199-021-00789-x
Adeleke BS, Babalola OO. Biotechnological overview of agriculturally important endophytic fungi. Horticul Environ Biotech. 2021;62:507–520. https://doi.org/10. 1007/s13580-021-00334-1
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances. Biores Technol. 2021;339:e125589. https://doi.org/10.1016/j.biortech.2021.125589
Buddhika UA, Abeysinghe S. Plant endophytic microorganisms enhancing crop productivity and yield. New Futr Dev Microbial Biotechnol Bioeng. 2021;1:45–53. https://doi.org/10.1016/ B978-0-444-64325-4.00005-5
Banyal A, Thakur V, Thakur R, Kumar P. Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics. Current Microbiol. 2021;78:1699–1717. https://doi.org/ 10.1007/s00284-021-02359-2
Renugadevi R, Ayyappadas MP, Priya VS, Shobana MF, Vivekanandhan K. Applications of bacterial endophytes and their advanced identification methodologies. J Appl Biol Biotech. 2021;9(6):51–55. http://dx.doi.org/10. 7324/JABB.2021.9606
Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, Garrido C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol Agent against Botrytis cinerea. Biology. 2021;10(6):e492. https://doi.org/10.3390/biology10060492
Wu W, Chen W, Liu S, et al. Beneficial relationships between endophytic bacteria and medicinal plants. Front Plant Sci. 2021;12:e646146. https:// doi.org/10.3389/fpls.2021.646146
Taulé C, Vaz-Jauri P, Battistoni F. Insights into the early stages of plant–endophytic bacteria interaction. World J Microbiol Biotech. 2021;37:1–9. https://doi.org/10.1007/s11274-020-02966-4
Nifakos K, Tsalgatidou PC, Thomloudi EE, et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes. Plants. 2021;10(8):e1716. https://doi.org/ 10.3390/plants10081716
Iqrar I, Numan M, Khan T, Shinwari ZK, Ali GS. LC–MS/MS-based profiling of bioactive metabolites of endophytic bacteria from cannabis sativa and their anti-phytophthora activity. Ant van Leeuwen. 2021;114:1165–1179. https://doi.org/ 10.1007/s10482-021-01586-8
Zhao J, Wang S, Zhu X, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Appl Soil Ecol. 2021;164:e103924. https://doi.org/10. 1016/j.apsoil.2021.103924
Mahdi I, Hafidi M, Allaoui A, Biskri L. Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination. Agriculture. 2021;11(3):e224. https://doi.org/10. 3390/agriculture11030224
Lipková N, Medo J, Artimová R, et al. Growth promotion of rapeseed (Brassica napus L.) and blackleg disease (Leptosphaeria maculans) suppression mediated by endophytic bacteria. Agronomy. 2021;11(10):e1966. https://doi.org/1 0.3390/agronomy11101966
Khan AA, Wang T, Hussain T, et al. Halotolerant Koccuria rhizophila (14asp) induced amendment of salt stress in pea plants by limiting Na+ uptake and elevating production of antioxidants. Agronomy. 2021;11(10):e1907. https://doi.org/ 10.3390/agronomy11101907
Hwang HH, Chien PR, Huang FC, et al. A plant endophytic bacterium, Burkholderia seminalis Strain 869T2, promotes plant growth in Arabidopsis, Pak Choi, Chinese amaranth, Lettuces, and other vegetables. Microorganisms. 2021;9(8):e1703. https://doi.org/10. 3390/microorganisms9081703
Xu W, Zhang L, Goodwin PH, et al. Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Front Microbiol. 2020;11:e598285. https://doi.org/10. 3389/fmicb.2020.598285
Nguyen SD, Trinh TH, Tran TD, et al. Combined application of rhizosphere bacteria with endophytic bacteria suppresses root diseases and increases productivity of black pepper (Piper nigrum L.). Agriculture. 2021;11(1):e15. https://doi.org/10. 3390/agriculture11010015
Jiménez-Gómez A, Saati-Santamaría Z, Kostovcik M, et al. Selection of the root endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. Crops. Agronomy. 2020;10(11):e1788. https://doi.org/10.3390/agronomy10111788
Zhao H, Chen X, Chen X, et al. New peptidendrocins and anticancer chartreusin from an endophytic bacterium of Dendrobium officinale. Annals Transl Med. 2020;8:e455. https://doi.org/10.21037%2Fatm.2020.03.227
Rustamova N, Bobakulov K, Begmatov N, Turak A, Yili A, Aisa HA. Secondary metabolites produced by endophytic Pantoea ananatis derived from roots of Baccharoides anthelmintica and their effect on melanin synthesis in murine B16 cells. Nat Prod Res. 2021;35(5):796–801. https://doi.org/10.1080/14786419.2019.1597354
Cheffi M, Chenari BA, Alenezi FN, et al. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms. 2019;7(9):e314. https://doi.org/10. 3390/microorganisms7090314
Mohamad OA, Li L, Ma JB, et al. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against verticillium dahliae. Front Microbiol. 2018;9:e924. https://doi. org/10.3389/fmicb.2018.00924
Selim HM, Gomaa NM, Essa AM. Application of endophytic bacteria for the biocontrol of rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol. 2017;27(1):81–95. https://doi.org/ 10.1080/09583157.2016.1258452
Dhanya KI, Swati VI, Vanka KS, Osborne WJ. Antimicrobial activity of Ulva reticulata and its endophytes. J Ocean Univ China. 2016;15(2):363–369. https://doi.org/10.1007/s11802-016-2803-7
Rana KL, Kour D, Sheikh I, et al. Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A, eds. Recent advancement in White Biotechnology Through Fungi. Springer; 2019:1–62.
Jouda JB, Mbazoa CD, Sarkar P, Bag PK, Wandji J. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant gram-negative bacteria. Afri Health Sci. 2016;16(3):734–743. https://doi.org/10.4314/ahs.v16i3.13
Elsayed HE, Kamel RA, Ibrahim RR, et al. Cytotoxicity, antimicrobial, and in silico studies of secondary metabolites from Aspergillus sp. isolated from Tecoma stans (L.) Juss. Ex Kunth Leaves. Front Chem. 2021;9:e760083. https://doi.org/10. 3389/fchem.2021.760083
Polli AD, Ribeiro MA, Garcia A, et al. Secondary metabolites of Curvularia sp. G6-32, an endophyte of Sapindus saponaria, with antioxidant and anticholinesterasic properties. Nat Prod Res. 2021;35(21):4148–4153. https://doi.org/10.1080/14786419.2020.1739681
Soni SK, Singh R, Ngpoore NK, et al. Isolation and characterization of endophytic fungi having plant growth promotion traits that biosynthesizes bacosides and with anolides under in vitro conditions. Braz J Microbiol. 2021;52:1791–1805. https://doi.org/ 10.1007/s42770-021-00586-0
Silva AA, Polonio JC, Bulla AM, et al. Antimicrobial and antioxidant activities of secondary metabolites from endophytic fungus Botryosphaeria fabicerciana (MGN23-3) associated to Morus nigra L. Nat Prod Res. 2021;36(12):3158–3162. https://doi.org/10.1080/14786419.2021.1947272
Rodrigo S, García-Latorre C, Santamaria O. Metabolites produced by fungi against fungal phytopathogens: review, implementation and perspectives. Plants. 2022;11(1):e81. https://doi. org/10.3390/plants11010081
Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis. 2019;77:225–235. https://doi.org/10.1007/s13199-018-0583-y
Manganyi MC, Regnier T, Tchatchouang CD, Bezuidenhout CC, Ateba CN. Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Ann Microbiol. 2019;69:659–663. https://doi.org/10.1007/s13213-019-1444-5
Wen S, Fan W, Guo H, Huang C, Yan Z, Long Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat Prod Res. 2020;34(20):2919–2925. https://doi. org/10.1080/14786419.2019.1598993
Manganyi MC, Tchatchouang CD, Regnier T, Bezuidenhout CC, Ateba CN. Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology. 2019;47(3):335–339. https://doi.org/10.1080/12298093.2019.1631121
Ma H, Wang F, Jin X, et al. A new diketopiperazine from an endophytic fungus Aspergillus aculeatus F027. Nat Prod Res. 2021;35(14):2370–2375. https://doi.org/10.1080/ 14786419.2019.1677652
Pansanit A, Pripdeevech P. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology. 2018;9(4):264–272. https://doi.org/10.1080/21501203.2018.1481154
Lubna, Asaf S, Hamayun M, Gul H, Lee IJ, Hussain A. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indole acetic acid. J Plant Inter. 2018;13(1):100–111. https://doi.org/ 10.1080/17429145.2018.1436199
El-Hawary SS, Sayed AM, Rateb ME, Bakeer W, AbouZid SF, Mohammed R. Secondary metabolites from fungal endophytes of Solanum nigrum. Nat Prod Res. 2017;31(21):2568–2571. https://doi.org/10.1080/14786419.2017.1327859
Liu HX, Tan HB, Chen YC, Li SN, Li HH, Zhang WM. Secondary metabolites from the Colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat Prod Res. 2018;32(19):2360–2365. https://doi.org/10.1080/14786419.2017.1410810
Jin Z, Gao L, Zhang L, et al. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Nat Prod Res. 2017;31(22):2700–2703. https://doi.org/10.1080/14786419.2017.1292265
Mishra VK, Passari AK, Chandra P, et al. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLOS ONE. 2017;17(5):e0268371. https://doi.org/10.1371/journal.pone.0186234
Zhang L, Niaz SI, Wang Z, et al. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat Prod Res. 2018;32(24):2887–2892.https://doi.org/10.1080/14786419.2017.1385023
Jouda JB, Fopossi JL, Kengne FM, et al. Secondary metabolites from Aspergillus japonicus CAM231, an endophytic fungus associated with Garcinia preussii. Nat Prod Res. 2017;31(8):861–869. https://doi.org /10.1080/14786419.2016.1250089
Aamir M, Rai KK, Zehra A, et al. Endophytic actinomycetes in bioactive compounds production and plant defense system. Microbial Endophytes. 2020;1:189–229. https://doi.org/10.1016/B978-0-12-818734-0.00009-7
Salem SS, El-Belely EF, Niedbała G, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials. 2020;10(10):e2082. https://doi.org/10.3390/nano10102082
Phạm HT, Suwannapan W, Koomsiri W, et al. Fodinicola acaciae sp. nov., an endophytic actinomycete isolated from the roots of Acacia mangium willd and its genome analysis. Microorganisms. 2020;8(4):e467. https://doi.org/10.3390/microorganisms8040467
Cao P, Li C, Wang H, et al. Community structures and antifungal activity of root-associated endophytic actinobacteria in healthy and diseased cucumber plants and Streptomyces sp. HAAG3-15 as a promising biocontrol agent. Microorganisms. 2020;8(2): e236. https://doi.org/10.3390/ microorganisms8020236
Htwe AZ, Moh SM, Soe KM, Moe K, Yamakawa T. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy. 2019;9(2):e77. https:// doi.org/10.3390/agronomy9020077
Yang R, Yang J, Wang L, et al. Lorneic acid analogues from an endophytic actinomycete. J Nat Prod. 2017;80(10):2615–2619. https://doi. org/10.1021/acs.jnatprod.7b00056
Rajivgandhi G, Vijayan R, Kannan M, Santhanakrishnan M, Manoharan N. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioactive Materials. 2016;1(2):140–150. https://doi.org/10.1016/ j.bioactmat.2016.11.002
Noriler SA, Savi DC, Ponomareva LV, et al. Vochysiamides A and B: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia. 2019;138:e104273. https://doi.org/ 10.1016/j.fitote.2019.104273
Silva FD, Liotti RG, Boleti AP, et al. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLOS ONE. 2018;13(4):e0195874. https://doi.org/10.1371/journal.pone.0195874
Uche-Okereafor N, Sebola T, Tapfuma K, Mekuto L, Green E, Mavumengwana V. Antibacterial activities of crude secondary metabolite extracts from Pantoea species obtained from the stem of Solanum mauritianum and their effects on two cancer cell lines. Inter J Environ Res Pub Health. 2019;16(4):e602. https://doi.org/ 10.3390/ijerph16040602
Supaphon P, Preedanon S. Evaluation of in vitro alpha-glucosidase inhibitory, antimicrobial, and cytotoxic activities of secondary metabolites from the endophytic fungus, Nigrospora sphaerica, isolated from Helianthus annuus. Ann Microbiol. 2019;69:1397–1406. https://doi.org/10.1007/s13213-019-01523-1
Gos FM, Savi DC, Shaaban KA, et al. Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil). Front Microbiol. 2017;8:e1642. https://doi.org/10.3389/ fmicb.2017.01642
González-Menéndez V, Crespo G, De Pedro N, et al. Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents. Sci Rep. 2018;8:e12085. https://doi.org/10.1038/s41598-018-30157-7
Kalyanasundaram I, Nagamuthu J, Muthukumaraswamy S. Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. J Microbiol Antimicro. 2015;7(2):13–20. https://doi.org/ 10.5897/JMA2014.0334
Selim KA, Elkhateeb WA, Tawila AM, et al. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation. 2018;4(3):e49. https://doi.org/10.3390/fermentation4030049
Adeleke BS, Babalola OO. Pharmacological potential of fungal endophytes associated with medicinal plants: a review. J Fungi. 2021;7(2):e147. https://doi.org/10.3390/jof7020147
Farooq T, Hameed A, Rehman K, Ibrahim M, Qadir MI, Akash MS. Anti-retroviral agents: looking for the best possible chemotherapeutic options to conquer HIV. Crit Rev Eukaryot Gene Expr. 2016;26(4):363–381. https://doi.org/10.1615/critreveukaryotgeneexpr.2016018255
Raekiansyah M, Mori M, Nonaka K, et al. Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses. Trop Med Health. 2017;45:e32. https://doi.org/10.1186/s41182-017-0072-7
Gunasekaran S, Sundaramoorthy S, Anitha U, Sathiavelu M, Arunachalam S. Endophytic fungi with antioxidant activity-a review. Res J Pharm Technol. 2015;8(6):731–737. http://dx.doi.org/10.5958/0974-360X.2015.00116.X
Toghueo RM, Boyom FF. Endophytes from ethno-pharmacological plants: Sources of novel antioxidants-A systematic review. Biocatal Agricult Biotechnol. 2019;22:e101430. https://doi.org/10.1016/j.bcab.2019.101430
Fill TP, Silva BF, Rodrigues-Fo E. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J Microbiol Biotechnol. 2010;20(3):622–629. https://doi.org/10.4014/jmb.0908.08018
Wang LW, Wang JL, Chen J, et al. A novel derivative of (-) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front Microbiol. 2017;8:e1251. https://doi.org/10.3389/fmicb.2017.01251
Copyright (c) 2023 MUDDASIR KHAN, Syed Hussain Shah, Fawad Hayat, Sajeela Akbar
This work is licensed under a Creative Commons Attribution 4.0 International License.
BSR follows an open-access publishing policy and full text of all published articles is available free, immediately upon publication of an issue. The journal’s contents are published and distributed under the terms of the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Thus, the work submitted to the journal implies that it is original, unpublished work of the authors (neither published previously nor accepted/under consideration for publication elsewhere). On acceptance of a manuscript for publication, a corresponding author on the behalf of all co-authors of the manuscript will sign and submit a completed the Copyright and Author Consent Form.