Development of Microbial Biofilms and Their Role in device, non-device and organ system level Infections

  • Farah Liaqat University of Sialkot, Pakistan
  • Waiza Ansar GC University, Lahore, Pakistan
  • Noor Muhammad GC University, Lahore, Pakistan
  • Maria Tariq Education University, Lahore, Pakistan
  • Zahid Nazir GC University, Lahore, Pakistan
  • Hafiz Muhammad Ghuffran Qamar GC University, Lahore, Pakistan
  • Iram Liaqat GC University, Lahore, Pakistan
Keywords: biofilm development, biofilm infections, chronic infections, device infections, microbial biofilms, non-device infections

Abstract

Abstract Views: 0

Background. Microorganisms, while providing many health benefits to human beings and other living organisms, are also responsible for significant infections. They cause infections in both planktonic and biofilm modes. Biofilms, defined as architectural communities of microorganisms encased in an extracellular polymeric substance (EPS), are strongly associated with infections. According to the National Institute of Health Sciences (NIH), biofilms account for 65% of microbial infections and 80% of chronic infections.

Methods. This review examines the current literature on microbial biofilms, focusing on their formation stages, pathogenicity, resistance mechanisms, and associated infections. Data from various studies is analyzed to summarize biofilm development and its role in chronic infections.

Results. Biofilm development involves four stages: attachment, microcolony formation, maturation, and dispersion. Quorum sensing (QS) mechanisms play a critical role in biofilm development and microbial communication. Biofilms enhance microbial pathogenicity and resistance to both the immune system and commercial antibiotics. They contribute to device-associated infections, such as those in catheters, and also to non-device infections in living tissues, as well as organ-level infections that impair systemic functions.

Conclusion. A comprehensive understanding of microbial biofilms is essential for developing strategies to manage and control biofilm-associated infections. This review highlights the need for further research on the mechanisms of biofilm formation and resistance to improve infection prevention and treatment.

Keywords: biofilm development, biofilm infections, chronic infections, device infections, microbial biofilms, non-device infections

Downloads

Download data is not yet available.

References

Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microb. 2021;7(1):e80. https://doi.org /10.1038/s41522-021-00251-2

Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6):e1614. https://doi.org/10.3390/microorganisms11061614

Shineh G, Mobaraki M, Bappy MJP, Mills DK. Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation–a review. Appl Microbiol. 2023;3(3):629–665. https://doi.org/10. 3390/applmicrobiol3030044

Shree P, Singh CK, Sodhi KK, Surya JN, Singh DK. Biofilms:understanding the structure and contribution towards bacterial resistance in antibiotics. Med Microecol. 2023;16:e100084. https://doi.org/10.1016/j.medmic.2023.100084

Mirzaei R, Mohammadzadeh R, Alikhani MY, et al. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020;72(7):1271–1285. https://doi.org/10.1002/iub.2266

Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9(2):e59. https://doi.org/10.3390/antibiotics9020059

Brinkman CL, Schmidt-Malan SM, Karau MJ, et al. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS One. 2016;11(12):e0168595. https://doi.org /10.1371/journal.pone.0168595

Liu X, Yao H, Zhao X, Ge C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules. 2023;28(6):e2432. https://doi.org/10. 3390/molecules28062432

Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608–620. https://doi.org/ 10.1038/s41579-022-00767-0

Liaqat I, Muhammad N, Ara C, et al. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms. Mol Biol Rep. 2023;50(5):3985–3997. https://doi.org /10.1007/s11033-023-08334-3

Abera GB, Trømborg E, Solli L, et al. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. Biotechnol Biofuels Bioprod. 2024;17(1):e145. https://doi.org/10.1186/s13068-024-02592-4

Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015(1):e759348. https://doi. org/10.1155/2015/759348

Armbruster CR, Parsek MR. New insight into the early stages of biofilm formation. PNAS 2018;115(17):4317–4319. https://doi.org/10.1073/pnas. 1804084115

Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. https://doi.org/10.4155/fmc.15.6

Lu L, Zhao Y, Li M, et al. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal. 2024;14(4):e100906. https://doi.org/10.1016/j.jpha.2023.11.013

Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112(10):1466–1477. https://doi. org/10.1172/jci20365

Samrot AV, Mohamed AA, Faradjeva E, et al. Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds-a review. Medicina. 2021;57(8):e839. https:// doi.org/10.3390/medicina57080839

Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol. 2023;13:e1137947. https://doi.org/10.3389/fcimb.2023.1137947

He Z, Liang J, Tang Z, Ma R, Peng H, Huang Z. Role of the luxS gene in initial biofilm formation by Streptococcus mutans. J Mol Microbiol Biotechnol. 2015;25(1):60–68. https://doi.org/10.1159/000371816

Laganenka L, Sourjik V. Bacterial quorum sensing signals at the interdomain interface. Isr J Chem. 2023;63(5-6):e202200080. https://doi. org/10.1002/ijch.202200080

Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(6):2655–2661. https://doi.org /10.1128/aac.00045-11

Ali A, Zahra A, Kamthan M, et al. Microbial biofilms: applications, clinical consequences, and alternative therapies. Microorganisms. 2023;11(8):e1934. https://doi.org/10. 3390/microorganisms11081934

Chambers HF, Bayer AS. Native-valve infective endocarditis. N Engl J Med. 2020;383(6):567–576. https://doi.org/ 10.1056/NEJMcp2000400

Kaushik A, Kest H, Sood M, Steussy BW, Thieman C, Gupta S. Biofilm producing methicillin-resistant Staphylococcus aureus (MRSA) infections in humans: clinical implications and management. Pathogens. 2024;13(1):e76. https:// doi.org/10.3390/pathogens13010076

Mirghani R, Saba T, Khaliq H, et al. Biofilms: formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022;8(3):239–277. https://doi.org/ 10.3934/microbiol.2022019

Szczotka-Flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Cont Lens. 2010;36(2):116–129. https://doi.org/ 10.1097/ICL.0b013e3181d20cae

Wu YT, Zhu H, Harmis NY, Iskandar SY, Willcox M, Stapleton F. Profile and frequency of microbial contamination of contact lens cases. Optom Vis Sci. 2010;87(3):E152-E158. https://doi.org/10.1097/opx. 0b013e3181cf86ee

Ayush PT, Ko J-H, Oh H-S. Characteristics of initial attachment and biofilm formation of pseudomonas aeruginosa on microplastic surfaces. Appl Sci. 2022;12(10):e5245. https://doi.org/10.3390/app12105245

Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? Apmis. 2017;125(4):365–375. https://doi.org/10.1111/apm.12665

de Sousa T, Hébraud M, Alves O, et al. Study of antimicrobial resistance, biofilm formation, and motility of pseudomonas aeruginosa derived from urine samples. Microorganisms. 2023;11(5):e1345. https://doi.org/ 10.3390/microorganisms11051345

Galar A, Weil AA, Dudzinski DM, Muñoz P, Siedner MJ. Methicillin-Resistant Staphylococcus aureus prosthetic valve endocarditis: pathophysiology, epidemiology, clinical presentation, diagnosis, and management. Clin Microbiol Rev. 2019;32(2):e00041-18. https://doi.org/ 10.1128/cmr.00041-18

Su Y, Yrastorza JT, Matis M, et al. Biofilms: formation, research models, potential targets, and methods for prevention and treatment. Adv Sci. 2022;9(29):e2203291. https://doi.org/ 10.1002/advs.202203291

Abdel‐Aleem H, Aboelnasr MF, Jayousi TM, Habib FA. Indwelling bladder catheterisation as part of intraoperative and postoperative care for caesarean section. Cochrane Database Syst Rev. 2014;2014(4):eCd010322. https://doi. org/10.1002/14651858.CD010322.pub2

Yi-Te C, Shigemura K, Nishimoto K, et al. Urinary tract infection pathogens and antimicrobial susceptibilities in Kobe, Japan and Taipei, Taiwan: an international analysis. J Int Med Res. 2020;48(2):e300060519867826. https://doi.org/10.1177/0300060519867826

Lasserre JF, Brecx MC, Toma S. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials. 2018;11(10):e1802. https://doi.org/10.3390/ma11101802

Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11. https://doi.org /10.1016/j.jcma.2017.07.012

Rajasekaran JJ, Krishnamurthy HK, Bosco J, et al. Oral microbiome: a review of its impact on oral and systemic health. Microorganisms. 2024;12(9):e1797. https://doi.org/ 10.3390/microorganisms12091797

Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23(2):59–72. https://doi.org/10.1055/s-0029-1214158

Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology E-Book. Elsevier Health Sciences; 2012.

Brogden KA, Guthmiller JM, Taylor CE. Human polymicrobial infections. Lancet. 2005;365(9455):253–255. https://doi.org/10.1016/s0140-6736(05)17745-9

Maisetta G, Batoni G. Editorial: interspecies interactions: effects on virulence and antimicrobial susceptibility of bacterial and fungal pathogens. Front Microbiol. 2020;11:e1922. https://doi.org/10. 3389/fmicb.2020.01922

Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1):193–213. https://doi.org/10.1128/cmr.00013-11

Limoli DH, Hoffman LR. Help, hinder, hide and harm: what can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections? Thorax. 2019;74(7):684–692. https://doi.org /10.1136/thoraxjnl-2018-212616

Khanolkar RA, Clark ST, Wang PW, et al. Ecological succession of polymicrobial communities in the cystic fibrosis airways. mSystems. 2020;5(6):e00809-20. https://doi.org/ 10.1128/mSystems.00809-20

Javed A, Manzoor S. Comparative analysis of bacterial vaginosis microbiota among pregnant and non-pregnant females and isolation of phages against enterococcus faecalis, enterococcus faecium, and shigella flexneri strains. Microb Pathog. 2020;149:e104588. https://doi.org/ 10.1016/j.micpath.2020.104588

Tomas M, Palmeira-de-Oliveira A, Simoes S, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Bacterial vaginosis: standard treatments and alternative strategies. Int J Pharm. 2020;587:e119659. https://doi.org /10.1016/j.ijpharm.2020.119659

Bair KL, Campagnari AA. Moraxella catarrhalis promotes stable polymicrobial biofilms with the major otopathogens. Front Microbiol. 2019;10:e3006. https://doi.org/ 10.3389/fmicb.2019.03006

Kaya E, Tollapi L, Pastore A, et al. Comparison of methods for the microbiological diagnosis of totally implantable venous access port-related infections. J Med Microbiol. 2020;69(11):1273–1284. https://doi.org/10.1099/jmm.0.001263

Azevedo AS, Almeida C, Melo LF, Azevedo NF. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit Rev Microbiol. 2017;43(4):423–439. https://doi.org /10.1080/1040841x.2016.1240656

Sridhar S, Suprabha BS, Shenoy R, Suman E, Rao A. Association of streptococcus mutans, candida albicans and oral health practices with activity status of caries lesions among 5-year-old children with early childhood caries. Oral Health Prev Dent. 2020;18:911–919. https://doi.org/10.3290/j.ohpd.a45411

Škerk V, Schönwald S, Krhen I, et al. Aetiology of chronic prostatitis. Int J Antimicrob Agents. 2002;19(6):471–474. https://doi.org/10.1016/s0924-8579(02)00087-0

Dahlen G, Basic A, Bylund J. Importance of virulence factors for the persistence of oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease. J Clin Med. 2019;8(9):e1339. https://doi.org/10.3390/jcm8091339

Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther. 2015;13(5):605–613. https://doi.org/10.1586/14787210.2015.1023291

Tay WH, Chong KK, Kline KA. Polymicrobial-host interactions during infection. J Mol Biol. 2016;428(17):3355–3371. https://doi. org/10.1016/j.jmb.2016.05.006

Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol. 2022;65:56–63. https://doi. org/10.1016/j.mib.2021.10.008

Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome:extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681. https://doi.org/10.1016/j.tim. 2020.03.016

DeAntonio R, Yarzabal JP, Cruz JP, Schmidt JE, Kleijnen J. Epidemiology of otitis media in children from developing countries:a systematic review. Int J Pediatr Otorhinolaryngol. 2016;85:65–74. https://doi.org/10.1016/j.ijporl.2016.03.032

Schilder AG, Chonmaitree T, Cripps AW, et al. Otitis media. Nat Rev Dis Primers. 2016;2(1):e16063. https://doi.org/10.1038/nrdp.2016.63

Chonmaitree T, Trujillo R, Jennings K, et al. Acute otitis media and other complications of viral respiratory infection. Pediatr. 2016;137(4):e20153555. https://doi. org/10.1542/peds.2015-3555

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193. https://doi.org/10.1128/cmr.15.2.167-193.2002

Jamal A, Alsabea A, Tarakmeh M, Safar A. Etiology, diagnosis, complications, and management of acute otitis media in children. Cureus. 2022;14(8):e28019. https://doi.org/ 10.7759/cureus.28019

Khairkar M, Deshmukh P, Maity H, Deotale V. Chronic suppurative otitis media: a comprehensive review of epidemiology, pathogenesis, microbiology, and complications. Cureus. 2023;15(8):e43729. https://doi.org/10.7759/cureus.43729

Elgharably H, Hussain ST, Shrestha NK, Blackstone EH, Pettersson GB. Current hypotheses in cardiac surgery: biofilm in infective endocarditis. Semin Thorac Cardiovasc Surg. 2016;28(1):56–59. https://doi.org /10.1053/j.semtcvs.2015.12.005

Linton MF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. Endotext; 2019.

Snow DE, Everett J, Mayer G, et al. The presence of biofilm structures in atherosclerotic plaques of arteries from legs amputated as a complication of diabetic foot ulcers. J Wound Care. 2016;25(Sup2):S16–S22. https://doi. org/10.12968/jowc.2016.25.Sup2.S16

Schrøder SA, Eickhardt S, Bjarnsholt T, Nørgaard T, Homøe P. Morphological evidence of biofilm in chronic obstructive sialadenitis. J Laryngol. Otol 2018;132(7):611-614. https://doi.org/10.1017/S0022215118000646

Kao WK, Chole RA, Ogden MA. Evidence of a microbial etiology for sialoliths. Laryngoscope. 2020;130(1):69–74. https://doi.org/ 10.1002/lary.27860

Crawford RW, Rosales-Reyes R, Ramirez-Aguilar MD, Chapa-Azuela O, Alpuche-Aranda C, Gunn JS. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci. 2010;107(9):4353–4358. https://doi.org/10.1073/pnas.1000862107

Dejea CM, Sears CL. Do biofilms confer a pro-carcinogenic state? Gut Microbes. 2016;7(1):54–57. https:// doi.org/10.1080/19490976.2015.1121363

Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017;23(1):18–30. https://doi.org /10.1016/j.molmed.2016.11.004

Diban F, Di Lodovico S, Di Fermo P, et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro lubbock chronic wound biofilm model. Int J Mol Sci. 2023;24(2):e1004. https://doi.org/10.3390/ijms24021004

James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44. https://doi.org/10.1111/j.1524-475X.2007.00321.x

Jung H-S, Ehlers MM, Lombaard H, Redelinghuys MJ, Kock MM. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol. 2017;43(6):651–667. https://doi.org/10.1080/1040841X.2017.1291579

Moreno I, Codoñer FM, Vilella F, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215(6):684–703. https://doi.org/10.1016/ j.ajog.2016.09.075

Douglas P. Re-thinking benign inflammation of the lactating breast: a mechanobiological model. Womens Health. 2022; 18: e17455065221075907. https://doi.org/ 10.1177/17455065221075907

Tan NC, Foreman A, Jardeleza C, Douglas R, Vreugde S, Wormald PJ. Intracellular staphylococcus aureus: the Trojan horse of recalcitrant chronic rhinosinusitis? Int Forum Allergy . 2013;3(4):261–266. https://doi.org /10.1002/alr.21154

Woo JH, Kim ST, Kang IG, Lee JH, Cha HE, Kim DY. Comparison of tonsillar biofilms between patients with recurrent tonsillitis and a control group. Acta Oto-Laryngol. 2012;132(10):1115–1120. https://doi.org/10.3109/00016489.2012.689859

Roberts AL, Connolly KL, Kirse DJ, et al. Detection of group a streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr. 2012;12(1):e3. https://doi.org /10.1186/1471-2431-12-3

Cattelan N, Dubey P, Arnal L, Yantorno OM, Deora R. Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis. 2015;74(1):eftv108. https://doi.org/ 10.1093/femspd/ftv108

Hector A, Frey N, Hartl D. Update on host-pathogen interactions in cystic fibrosis lung disease. Mol Cell Pediatr. 2016;3(1):e12. https://doi.org/10.1186 /s40348-016-0039-5

Yoon BI, Han D-S, Ha US, et al. Clinical courses following acute bacterial prostatitis. Prostate Int. 2013;1(2):89–93. https://doi.org/10. 12954/PI.12013

Pendegast H, Leslie S, Rosario D. Chronic Prostatitis and Chronic Pelvic Pain Syndrome In Men. StatPearls; 2024.

Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol. 2020;18(4):211–226. https://doi.org/10.1038/s41579-020-0324-0

Published
2025-03-21
How to Cite
Liaqat, F., Ansar, W., Muhammad, N., Tariq, M., Nazir, Z., Qamar, H. M. G., & Liaqat, I. (2025). Development of Microbial Biofilms and Their Role in device, non-device and organ system level Infections. BioScientific Review, 7(2), 32-53. https://doi.org/10.32350/bsr.72.04
Section
Review Article