Building Climate-resilient Infrastructure through Microorganisms: A Mini Review

  • Muhammad Naqeeb Ur Rehman Qureshi Pir Mehr Ali Shah ARID Agriculture University Rawalpindi, Pakistan
  • Muhammad Jahanzaib Javaid Al-Wedad General Medical Group, Alwesam, Al Taif, Makkah Region, Saudi Arabia
  • Maria Kanwal Capital University of Science and Technology (CUST), Islamabad, Pakistan
  • Atta Rasool University of the Punjab, Lahore, Pakistan
  • Muhammad Anees Ur Rehman Qureshi Allama Iqbal Open University, Islamabad, Pakistan
Keywords: bio-concretes, bioremediation, climate resilience, microbial construction, microorganisms

Abstract

Abstract Views: 0

Microorganisms were considered as the disease-causing agents a long time ago. However, this fear transformed into their acceptance due to their biological, physiological, and ecological understanding which resulted in the modification of Germ Theory. Currently, mutualistic and parasitic role of microbes is well-understood which paved the path for their biotechnological use. Additionally, microbial bio-coatings are outstanding bio-sensors for environmental monitoring, food analysis, heavy metal detection, and bioelectronics. The use of bacteria in self-healing concrete repair is advantageous due to their potential for low-cost binding, providing strength, stiffness, durability, and reduction in steel reinforcements. The surface membrane of bacteria is negatively charged which binds with metallic ions in basic medium that is a key factor in carbonate precipitation on their surfaces to repair cracks. On the other hand, calcite precipitation also influences the life span and stability of concrete. Recently, microorganisms assisted remediation, geo-polymerizations, and carbon capture. Furthermore, heavy metal detections were reported which may revolutionize microbial utilization in building climate resilient infrastructure. The current review spotlighted the applications of microorganisms in concretes, soil engineering, bio-coatings, bio-remediation, carbon capturing, and monitoring soil properties. In the end, recent developments and future directions were meticulously-vetted. The study concluded that the application of microbes in building climate-resilient infrastructure is reliable to decrease carbon emissions, enhancing self-repair concrete systems and developing sustainable green systems. Exploitation of natural phenomenon occurring in microorganisms not only aids in more climate resilient systems but also contributes positively for a green environment.

Downloads

Download data is not yet available.

References

Rizwan M, Selvanathan V, Rasool A, et al. Metal–Organic framework-based composites for the detection and monitoring of pharmaceutical compounds in biological and environmental matrices. Water Air Soil Pollut. 2022;233:e493. https:// doi.org/10.1007/s11270-022-05904-2

Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Fawy KF, Rasheed T. pH-responsive chitosan dendrimer hydrogels enabling controlled cefixime release. European Polymer Journal. 2024;219:e113377. https://doi.org/10.1016/j.eurpolymj.2024.113377

Rasool A, Qureshi MNUR, Kanwal M, Anwar MA, Butt MS, Firdous N. Chemical modifications of alginates for biomedical applications-a review. Sci Inq Rev. 2025;9(2):1-48. https://doi.org/10.32350/sir.92.03

Chapman R, Gause G. The struggle for existence. Ecology. 1935;16(4):656-657.

Hungate R. Further experiments on cellulose digestion by the protozoa in the rumen of cattle. Biol Bull. 1943;84(2):157-163. https://doi.org/10.2307/1538178

McFall-Ngai MJ, Ruby EG. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science. 1991;254(5037):1491-1494.

Dunlap PV, Mcfall‐Ngai MJ. Initiation and control of the bioluminescent symbiosis between Photobacterium leiognathi and leiognathid fish. Ann New York Acad Sci. 1987;503(1):269-283. https://doi.org/10.1111/j.17496632.1987.tb40614.x

Liu AH. Revisiting the hygiene hypothesis for allergy and asthma. J All Clin Immunol. 2015;136(4):860-865. https://doi.org/10.1016/j.jaci. 2015.08.012

Rook G, Brunet L. Microbes, immunoregulation, and the gut. Gut. 2005;54(3):317-320. https://doi.org/10.1136/gut.2004.053785

Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med. 2016:27-37. https://doi.org/10.2147/IJGM.S98280

Manzoor H, Arshad N, Qureshi MAR, Javed A. Hydroxyapatite-reinforced pectin hydrogel films PEC/PVA/APTES/HAp: doxycycline loading for sustained drug release and wound healing applications. RSC Adv. 2025;15(37):30026-30045. https://doi. org/10.1039/D5RA01989C

Arshad N, Chaudhary AA, Saleem S, Akram M, Qureshi MAUR. Surface modification of surgical suture by chitosan-based biocompatible hybrid coatings: In-vitro anti-corrosion, antibacterial, and in-vivo wound healing studies. Int J Biol Macromol. 2024;281:e136571. https://doi.org /10.1016/j.ijbiomac.2024.136571

Qureshi MAUR, Arshad N, Rasool A, et al. Kappa-carrageenan and sodium alginate-based pH-responsive hydrogels for controlled release of methotrexate. Royal Soc Open Sci. 2024;11(4):e231952. https://doi.org/10.1098/rsos.231952

Cockell CS. Are microorganisms everywhere they can be? Environ Microbiol. 2021;23(11):6355-6363. https://doi.org/10.1111/1462-2920.15825

Hassoun MN, Al-Manaseer A. Structural Concrete: Theory and Design. John Wiley & Sons; 2020.

Jefferson A, Joseph C, Lark R, Isaacs B, Dunn S, Weager B. A new system for crack closure of cementitious materials using shrinkable polymers. Cement Concr Res. 2010;40(5):795-801. https://doi.org/10.1016/j.cemconres.2010.01.004

Wu M, Hu X, Zhang Q, Xue D, Zhao Y. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Construct Build Mater. 2019;209:631-643. https://doi.org/10.1016/j.conbuildmat.2019.03.181

Omoregie AI, Ngu LH, Ong DEL, Nissom PM. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocat Agricul Biotech. 2019;17:247-255. https://doi.org/10.1016/j.bcab. 2018.11.030

Schwantes-Cezario N, Porto MF, Sandoval G, Nogueira G, Couto A, Toralles BM. Effects of Bacillus subtilis biocementation on the mechanical properties of mortars. Revista IBRACON de Estruturas e Materiais. 2019;12(01):31-38.

Rao PP, Asadi S, Krishna MR, Babu AS, Alla S. An experimental investigation of bacteria impact on compressive strength of cement mortar and concrete. Materials Today: Proceedings. 2021;43:1949-1955. https://doi.org/10.1016/j.matpr.2020.11.213

Cagatay Ersan Y, Erşan Y. Microbial Nitrate Reduction Induced Autonomous Self-Healing in Concrete [dissertation]. Ghent: Ghent University; 2016.

Wang J, Soens H, Verstraete W, De Belie N. Self-healing concrete by use of microencapsulated bacterial spores. Cement Concr Res. 2014;56:139-152. https://doi.org/10.1016/j.cemconres.2013.11.009

Alazhari MS. The effect of microbiological agents on the efficiency of bio-based repair systems for concrete. University of Bath; 2017.

Gutierrez-Padilla MGD. Activity of Sulfur Oxidizing Microorganisms and Impacts on Concrete Pipe Corrosion [dissertation]. Boulder: University of Colorado at Boulder; 2007.

Kantzas A, Stehmeier L, Marentette D, Ferris F, Jha K, Maurits F. A novel method of sand consolidation through bacteriogenic mineral plugging. Paper presented at: The Annual Technical Meeting; June 6–9, 1992; Calgary, Alberta. https://doi.org/10.2118/92-46

Rivadeneyra M, Delgado G, Ramos-Cormenzana A, Delgado R. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol. 1998;149(4):277-287. https://doi.org/10.1016/S0923-2508(98)80303-3

Suthar H, Hingurao K, Desai A, Nerurkar A. Selective plugging strategy based microbial enhanced oil recovery using Bacillus licheniformis TT33. J Microbiol Biotechnol. 2009;19(10):1230-1237.

Sen R. Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci. 2008;34(6):714-724. https://doi.org/10.1016/j.pecs. 2008.05.001

Zhong L, Islam M. A new microbial plugging process and its impact on fracture remediation. Paper presented at: SPE Annual Technical Conference and Exhibition; October 22–25, 1995; Dallas, Texas.

Boquet E, Boronat A, Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature. 1973;246(5434):527-529. https://doi.org/10.1038/246527a0

Achal V, Mukherjee A, Basu P, Reddy MS. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Indust Microbiol Biotechnol. 2009;36(3):433-438. https://doi.org/ 10.1007/s10295-008-0514-7

Martinez B, DeJong J, Ginn T, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng. 2013;139(4):587-598. https://doi.org/10.1061/(ASCE)GT.19435606.0000787

Zhu T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol. 2016;4:e4. https://doi.org/10.3389/fbioe.2016.00004

Le Metayer-Levrel G, Castanier S, Orial G, Loubière J-F, Perthuisot J-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedim Geol. 1999;126(1-4):25-34. https://doi.org/ 10.1016/S0037-0738(99)00029-9

Rasool A, Islam A, Fayyaz S. Hydrogels and their emerging applications. In: Kumar A, Gupta R, eds. Hydrogels. CRC Press; 2023:24.

D'souza S. Microbial biosensors. Biosens Bioelectron. 2001;16(6):337-353.

Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788-1799. https://doi.org/10.1016/j.bios.2010.09.005

Rasheed T, Bilal M. Thermo-responsive functionalized polymeric nanocomposites. In: Ali N, Bilal M, Gupta RK, eds. Smart Polymer Nanocomposites: Design, Synthesis, Functionalization, Properties, and Applications. Elsevier; 2022:219-240.

Bracaglia S, Ranallo S, Ricci F. Electrochemical cell‐free biosensors for antibody detection. Angew Chem. 2023;135(8):e202216512. https:// doi.org/10.1002/ange.202216512

Huang C-W, Lin C, Nguyen MK, Hussain A, Bui X-T, Ngo HH. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered. 2023;14(1):58-80. https://doi.org/10.1080/21655979.2022.2095089

Islam M, Rana MS. Contaminant identification in water by microbial biosensors: a review. J Knowled Learn Sci Technol. 2023;1(1):25-33. https://doi.org/10.60087/jgrkv103

Xu X, Ying Y. Microbial biosensors for environmental monitoring and food analysis. Food Rev Int. 2011;27(3):300-329. https://doi.org /10.1080/87559129.2011.563393

Griño Jr AA, Soriano HSP, Promentilla MAB, Ongpeng JMC. Exploring the potential of polypropylene fibers and bacterial co-culture in repairing and strengthening geopolymer-based construction materials. Buildings. 2023;13(10):e2668. https://doi.org /10.3390/buildings13102668

Hingley-Wilson S, Keddie J. Biocoatings: Painting Bacteria onto Surfaces for Sustainable Processes. University of Surrey; 2019.

Rasool A, Hafeez S, Islam A, et al. Polymer nanocomposite films and coatings for biomedical applications. In: Pandey M, Deshmukh K, Hussain CM, eds. Polymer nanocomposite films and coatings. Elsevier; 2024:729-758.

Flickinger MC, Bernal OI, Schulte MJ, et al. Biocoatings: challenges to expanding the functionality of waterborne latex coatings by incorporating concentrated living microorganisms. J Coat Technol Res. 2017;14:791-808. https://doi.org/10.1007/s11998-017-9933-6

Krings S, Chen Y, Hingley-Wilson S, Keddie, J. Biocoatings: painting bacteria on surfaces. Access Microbiol Soc. 2020;2(74). https://doi.org /10.1099/acmi.ac2020.po0333

DeJong JT, Mortensen BM, Martinez BC, Nelson DC. Bio-mediated soil improvement. Ecoog Eng. 2010:197-210. https://doi.org/10.1016/j.ecoleng. 2008.12.029

Azeem MK, Islam A, Khan RU, et al. Guar gum/polyethylene glycol/graphene oxide environmentally friendly hybrid hydrogels for controlled release of boron micronutrient. Royal Soc Open Sci. 2023;10(12):e231157. https://doi.org/10.1098/rsos.231157

Hart MM, Cross AT, D'Agui HM, et al. Examining assumptions of soil microbial ecology in the monitoring of ecological restoration. Ecol Solut Evid. 2020;1:e12031. https://doi.org/10.1002/2688-8319.12031

El Mountassir G, Minto JM, van Paassen LA, Salifu E, Lunn RJ. Applications of microbial processes in geotechnical engineering. Adv Appl Microbiol. 2018;104:39-91. https://doi .org/10.1016/bs.aambs.2018.05.001

Shahroz M, Arshad N, Qureshi MAR. Investigating synergistic effects of biomass-derived carbon coatings on TiO2 for anode candidacy in electrochemical OER and supercapacitor performance enhancement. Int J Hydro Energy. 2025;137:214-224. https://doi.org/ 10.1016/j.ijhydene.2025.05.117

Liang X, Duan Y, Su Y, et al. Carbon capture by biological methods. Cambridge Prism: Carb Technol. 2025;1:e4. https://doi.org/10.1017/cat. 2025.10005

Chen FY-H, Jung H-W, Tsuei C-Y, Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 2020;182(4):933-946. https://doi.org/ 10.1016/j.cell.2020.07.010

Cheng J, Zhu Y, Zhang Z, Yang W. Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants. Biores Technol. 2019;291:e121850. https://doi.org/10.1016/j.biortech.2019.121850

Fixen KR, Zheng Y, Harris DF, et al. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Nat Acad Sc. 2016;113(36):10163-10167. https://doi.org/10.1073/pnas.1611043113

Park WG, Kim M, Li S, et al. A light-driven photosynthetic microbial fuel cell for carbon-negative bioelectricity production. Sustain Energ Fuel. 2024;8(11):2476-2484. https://doi.org/10.1039/D3SE01487H

Yuvraj. Microalgal bioremediation: a clean and sustainable approach for controlling environmental pollution. In: Arora S, Kumar A, Ogita S, Yau Y-Y, eds. Innovations in Environmental Biotechnology. Springer; 2022:305-318.

Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Bioresour Technol. 2021;328:e124835. https://doi.org/10.1016/j.biortech.2021.124835

Vidali M. Bioremediation. an overview. Pure Appl Chem. 2001;73(7):1163-1172.

Omoregie AI, Wong CS, Rajasekar A, et al. Bio-based solutions for concrete infrastructure: a review of microbial-induced carbonate precipitation in crack healing. Buildings. 2025;15(7):e1052. https://doi.org/10.3390/buildings15071052

Rusanowska P, Dębowski M, Zieliński M. Microalgae-Assisted microbial fuel cell for treatment of difficult waste streams. Energies. 2025;18(4):e963. https://doi.org/10.3390/en18040963

Ali M, Khan M, Naveed M, Tanvir M. Microbe-assisted rhizodegradation of hydrocarbons and growth enhancement of wheat plants in hydrocarbons contaminated soil. Int J Environ Sci Technol. 2024;21(3):3169-3184. https://doi.org/ 10.1007/s13762-023-05174-3

Sharma K, Dhiman S, Mukherjee G. Embracing microbial systems in built environments. In: Dhiman S, Mukherjee G, eds. Waste to Wealth: Emerging Technologies for Sustainable Development. CRC Press; 2025:1¬-32.

Jaramillo HY, Vasco-Echeverri O, López-Barrios R, García-León RA. Optimization of bio-brick composition using agricultural waste: mechanical properties and sustainable applications. Sustainability. 2025;17(5):e1914. https://doi.org /10.3390/su17051914

Lima-Zaloumis J, Cady S, Blank J, et al. Laminae as structural biosignatures in NASA’s Life detection knowledge base. Astrobiology. Preprint posted online April 1, 2025.

Zhao H, Gu Y, Zhang X, et al. Synergistic addition of Cu and Ce enhanced sulfate reducing bacteria-assisted corrosion cracking resistance of 2205 duplex stainless steel. J Mater Sci Technol. 2024;196:1-11. https://doi.org/10.1016/j.jmst.2024.02.023

Zhai S, Zhang D, Liu W, et al. Microbial electrochemical technologies assisted nitrogen recovery from different wastewater sources: performance, life cycle assessment, and challenges. Resour Conserv Recycl. 2023;194:e107000. https://doi.org/10.1016/j.resconrec.2023.107000

Das A, Das N, Pandey P, Pandey P. Microbial enhanced oil recovery: process perspectives, challenges, and advanced technologies for its efficient applications and feasibility. Arch Microbiol. 2025;207(5):e106. https://doi.org/10.1007/s00203-025-04307-1

Qureshi MAUR, Arshad N, Rasool A, Qureshi MN, Kanwal M. Applications of carbon nanotubes for fabrication of photovoltaic devices. In: Singh M, Singh AK, eds. Advanced Nanomaterials for Solution-Processed Flexible Optoelectronic Devices. CRC Press. 2025:1-29.

Published
2025-12-08
How to Cite
Qureshi, M. N. U. R., Javaid, M. J., Kanwal, M., Rasool, A., & Qureshi, M. A. U. R. (2025). Building Climate-resilient Infrastructure through Microorganisms: A Mini Review. BioScientific Review, 7(4), 49-68. https://doi.org/10.32350/bsr.74.05
Section
Review Article