Investigating the Use of Diketopyrrolopyrrole (DPP) Based Highly Conjugated Small Molecules in Organic Solar Cells
Abstract
Abstract Views: 211A series of three donor molecules (DPP-B, DPP-N and DPP-P) based on diketopyrrolopyrrole (DPP) sharing the similar backbone of D-π-A-π-D have been investigated. In these molecules, substituents such as pyrene, naphthalene and benzene act as the electron donating end groups, DPP as the central core unit and thiophene has been used as a bridge between donor and acceptor fragments. Theoretical calculations have been carried out with the help of density functional theory (DFT) and time-dependent functional theory (TD-DFT). For the optimization of geometry of investigated molecules, DFT functional B3LYP/6-31g(d) has been used and TD-B3LYP/6-31g(d) has been used to obtain the best results of calculations inexcited state. DPP-P has been considered a suitable donor molecule among all investigated molecules as it manifests the suitable value of Eg of 2.24 eV and showed the stronger absorption λmaxof 611 nm. Hence, this study reveals that investigated donor molecules are suitable for high performance organic solar cell devices.
Copyright (c) The Authors
Downloads
References
Shafiee S, Topal E. When will fossil fuel reserves be diminished?. Energy policy. 2009;37(1):181-9. https://doi.org/10.1016/j.enpol.2008.08.016
Khan J, Arsalan MH. Solar power technologies for sustainable electricity generation–A review. Renew Sustain Energy Rev. 2016;55:414-25. https://doi.org/10.1016/j.rser.2015.10.135
Green MA. Photovoltaic principles. Physica E Low Dimens Syst Nanostruct. 2002;14(1-2):11-7. https://doi.org/10.1016/S1386-9477(02)00354-5
Scharber MC, Sariciftci NS. Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci. 2013;38(12):1929-40. https://doi.org/10.1016/j.progpolymsci.2013.05.001
Shin WS, Jeong HH, Kim MK, et al. Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application. J Material Chem. 2006;16(4):384-90. https://doi.org/10.1039/B512983D
Nelson J. Organic photovoltaic films. Curr Opin Solid State Mater Sci. 2002;6(1):87-95. https://doi.org/10.1016/S1359-0286(02)00006-2
Lee OP, Yiu AT, Beaujuge PM, et al. Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly. Adv Material. 2011;23(45):5359-63. https://doi.org/10.1002/adma.201103177
Zhou J, Wan X, Liu Y, et al. Small molecules based on benzo [1, 2-b: 4, 5-b′] dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc. 2012;134(39):16345-51. https://doi.org/10.1021/ja306865z
Chen HJ, Wu HT, Hung KT, Fu SW, Shih CF. Sodium doping in copper-phthalocyanine/C60 heterojunction for organic photovoltaic applications. Thin solid films. 2013;544:249-53. https://doi.org/10.1016/j.tsf.2013.03.110
Bibi S, Jia R, Zhang HX, Bai FQ. Effect of different topological structures (D-π-D and D-π-A-π-D) on the optoelectronic properties of benzo [2, 1-B: 3, 4-B́] dithiophene based donor molecules toward organic solar cells. Solar Energy. 2019;186:311-22. https://doi.org/10.1016/j.solener.2019.04.043
Kwon OK, Park JH, Kim DW, Park SK, Park SY. An All‐Small‐Molecule Organic Solar Cell with High Efficiency Nonfullerene Acceptor. Adv Material. 2015;27(11):1951-6. https://doi.org/10.1002/adma.201405429
Kim T, Kim JH, Kang TE, et al. Flexible, highly efficient all-polymer solar cells. Nature Commun. 2015;6(1):1-7. https://doi.org/10.1038/ncomms9547
Lin Y, He Q, Zhao F, et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J Am Chem Soc. 2016;138(9):2973-6. https://doi.org/10.1021/jacs.6b00853
Li Z, Lin JD, Phan H, et al. Competitive absorption and inefficient exciton harvesting: lessons learned from bulk heterojunction organic photovoltaics utilizing the polymer acceptor P (NDI2OD‐T2). Adv Funct Material. 2014;24(44):6989-98. https://doi.org/10.1002/adfm.201401367
Choi YS, Jo WH. A strategy to enhance both VOC and JSC of A–D–A type small molecules based on diketopyrrolopyrrole for high efficient organic solar cells. Org Electron. 2013;14(6):1621-8. https://doi.org/10.1016/j.orgel.2013.03.031
Fan L, Chen G, Jiang L, Yuan J, Zou Y. Benzodichalcogenophene-diketopyrrolopyrrole small molecules as donors for efficient solution processable solar cells. Chem Phy. 2017;493:77-84. https://doi.org/10.1016/j.chemphys.2017.06.007
Pan L, Liu T, Wang J, et al. Efficient organic ternary solar cells employing narrow band gap diketopyrrolopyrrole polymers and nonfullerene acceptors. Chem Material. 2020;32(17):7309-17.
Gaussian RA, Frisch MJ, Trucks GW, et al. Gaussian, Inc., Wallingford CT. 2009.
Yuan J, Zhai Z, Li J, et al. Correlation between structure and photovoltaic performance of a series of furan bridged donor–acceptor conjugated polymers. J Material Chem A. 2013;1(39):12128-36. https://doi.org/10.1039/C3TA12210G
Yuan J, Ma W. Diketopyrrolopyrrole based highly crystalline conjugated molecules for application in small molecule donor-polymer acceptor nonfullerene organic solar cells. Org Electron. 2016;39:279-87. https://doi.org/10.1016/j.orgel.2016.10.021
Demeter D, Rousseau T, Leriche P, Cauchy T, Po R, Roncali J. Manipulation of the Open‐Circuit Voltage of Organic Solar Cells by Desymmetrization of the Structure of Acceptor–Donor–Acceptor Molecules. Adv Functional Material. 2011;21(22):4379-87. https://doi.org/10.1002/adfm.201101508
Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ. Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Material. 2012;11(1):44-8. https://doi.org/10.1038/nmat3160
Yin B, Yang L, Liu Y, et al. Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl Phy Lett. 2010;97(2):139. https://doi.org/10.1063/1.3460911
Zhang J, Yang Y, He C, Li Y. Red-emission organic light-emitting diodes based on solution-processable molecules with triphenylamine core and benzothiadiazole-thiophene arms. Sci China Chem. 2011;54(4):695-8.
Qiao Y, Guo Y, Yu C, et al. Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. J Am Chem Soc. 2012;134(9):4084-7. https://doi.org/10.1021/ja3003183
Murphy L, Hong W, Aziz H, Li Y. Influences of using a high mobility donor polymer on solar cell performance. Org Electron. 2013;14(12):3484-92. https://doi.org/10.1016/j.orgel.2013.09.024
Jin R, Wang K. Rational Design of Diketopyrrolopyrrole-Based Small Moleculesas Donating Materials for Organic Solar Cells. Int J Mol Sci. 2015;16(9):20326-43. https://doi.org/10.3390/ijms160920326
Lee OP, Yiu AT, Beaujuge PM, et al. Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly. Adv Material. 2011;23(45):5359-63. https://doi.org/10.1002/adma.201103177
Walker B, Tamayo AB, Dang XD, et al. Nanoscale phase separation and high photovoltaic efficiency in solution‐processed, small‐molecule bulk heterojunction solar cells. Adv Function Material. 2009;19(19):3063-9. https://doi.org/10.1002/adfm.200900832
Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107(4):1324-38. https://doi.org/10.1021/cr050149z
Young DC. A practical guide for applying techniques to real-world problems. Comput Chem. 2001;9:390.
Kong H, Cho S, Lee DH, et al. The influence of electron deficient unit and interdigitated packing shape of new polythiophene derivatives on organic thin‐film transistors and photovoltaic cells. J Polym Sci A Polym Chem. 2011;49(13):2886-98. https://doi.org/10.1002/pola.24724
Copyright (c) 2021 Sana Akram , Azra Quraishi, Abid Hussain , Nadia Zulfiqar, Madiha Akbar
This work is licensed under a Creative Commons Attribution 4.0 International License.