Computing Novel Multiplicative Zagreb Connection Indices of Metal-Organic Networks (MONs)
Abstract
Abstract Views: 102Topological index (TI) is a mathematical formula which represents a (molecular) network using graph isomorphism. TI also predicts the toxicological, structural, biological and physicochemical properties of a chemical compound. Metal-organic network (MON) is a recently developed chemical compound having versatile applications in heterogeneous catalysis, environmental hazard, super- capacitors, absorption analysis, energy and gas storage device, sensing, and the assessment of several chemicals. MON consists of vertices (or metal ions) and edges between vertices (or linkers) that provides a huge surface area, excellent chemical stability, unique morphology, octahedral cluster, and a large pore volume. At present, zinc based MONs are also used in biomedical applications such as cancer imaging, drug delivery, and biosensing. In this paper, we initially define the fourth and fifth multiplicative Zagreb connection indices (ZCIs). We also compute the first, second, third, fourth and fifth multiplicative ZCIs of two different zinc based MONs, namely zinc oxide network (R) and zinc silicate network (S).
Copyright(c) The Author
Downloads
References
Cui Y, Xu H, Yue Y, et al. A luminescent mixed-lauthanide metal-organic framework thermometer. J Am Chem Soc. 2012;134:3979-3982. https://doi.org/10.1021/ja2108036
Wang C, Tian L, Zhu W, et al. Dye@bio-MOF-1 composite as a dual emitting platform for explosive molecules. ACS Appl Mater Interfaces, 2017;9:20076-20085. https://doi.org/10.1021/acsami.7b04172
Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based metal-organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metabolism Rev. 2019;51(3):356-377. https://doi.org/10.1080/03602532.2019.1632887
Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Sci. 2002;295:469-472. https://doi.org/10.1126/science.1067208
Keskin S, Sholl D. Efficient methods for screening of metal organic frame work membranes for gas separations using atomically detailed models. Langmuir. 2009;25(19):11786-11795.
Ahmad I, Jhung SH. Composites of metal-organic frameworks: preparation and application in adsorption. Mater Today, 2014;17(3):136-146. https://doi.org/10.1016/j.mattod.2014.03.002
Li H, Li L, Lin R.-B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem. 2019;1(1):100006. https://doi.org/10.1016/j.enchem.2019.100006
Thornton AW, Nairn KM, Hill JM, Hill AJ, Hill MR. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J Am Chem Soc. 2009;131(30):10662-10669. https://doi.org/10.1021/ja9036302
Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Edit. 2008;47(22):4144-4148. https://doi.org/10.1002/ange.200705998
Ding G, Yuan J, Jin F, et al. High performance all-polymer non-fullerence solar cells by employing an efficient polymer-small molecule acceptor alloy strategy. Nano Energy. 2017;36:356-365. https://doi.org/10.1016/j.nanoen.2017.04.061
Yin Z, Zhou YL, Zeng MH, Kurmoo M. The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton T. 2015;44(12):5258-5275.
https://doi.org/10.1039/C4DT04030A
Kim M, Cahill JF, Fei H, Prather KA, Cohen SM. Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J Am Chem Soc. 2012;134(43):18082-18088. https://doi.org/10.1021/ja3079219
Lin R.B, Xiang S, Xing H, Zhou W, Chen B. Exploration of porous metal–organic frameworks for gas separation and purification. Coordin Chem Rev. 2019;378:87-103. https://doi.org/10.1016/j.ccr.2017.09.027
Mandal B, Chung JS, Kang SG. Exploring the geometric, magnetic and electronic properties of Hofmann MOFs for drug delivery. Phys Chem Chem Phys. 2017;19(46):31316-31324. https://doi.org/10.1039/C7CP04831A
Geier SJ, Mason JA, Bloch ED. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2 (dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn). Chem Sci. 2013;4(5):2054–2061. https://doi.org/10.1039/C3SC00032J
Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev. 2009;38(5);1294–1314. https://doi.org/10.1039/B802256A
Rosi NL, Eckert J, Eddaoudi M. Hydrogen storage in microporous metal-organic frameworks. Sci. 2003;300(5622):1127–1129.
Kennedy RD, Krungleviciute V, Clingerman DJ. Carborane-based metal-organic framework with high methane and hydrogen storage capacities. Chem Mater. 2013;25(17):3539–3543. https://doi.org/10.1021/cm4020942
Sarkisov L. Toward rational design of metal-organic frameworks for sensing applications: efficient calculation of adsorption characteristics in zero loading regime. J Phys Chem C. 2012;116(4):3025–3033. https://doi.org/10.1021/jp210633w
Li J.-R, Kuppler RJ, Zhou H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1477–1504. https://doi.org/10.1039/B802426J
Kim JY, Balderas-Xicohtencatl R, Zhang L. Exploiting diffusion barrier and chemical affinity of metalorganic frameworks for efficient hydrogen isotope separation. J Am Chem Soc. 2017;139(42)15135–15141.
Klavzar S, Gutman I. Selected properties of the Schultz molecular topological index. J Chem Inf Comput Sci. 1996;36:1001-1003. https://doi.org/10.1021/ci9603689
Rucker G, Rucker C. On topological indices, boiling points and cycloalkanes. J Chem Inf Comp Sci. 1999;39:788-802. https://doi.org/10.1021/ci9900175
Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E. Medicinal chemistry and bioinformatics-current trends in drug discovery with network topological indices. Cur Top Med Chem. 2007;7(10):1015-1029.
Copyright (c) 2021 Usman Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.