Adsorptive Remediation of Wastewater Pollutants using Different Nanomaterials
Abstract
Abstract Views: 214Keeping in view the scarcity of water resources, effective use of water is an essential element for humans. The contamination of water with toxic pollutants is the biggest challenge globally. Therefore, it is crucial to develop and implement water treatment approaches which limit water wastage. Water is contaminated with various toxic, inorganic (heavy metals) and organic (dyes) pollutants. Primarily, water pollution is created by man-made activities, including household chores, agricultural consumption, and industrial waste. On the contrary, nanotechnology promisingly ensures safe and healthy drinking water. The current review article provides a brief overview of recent developments in nanomaterials, biosorption capacities (presented in tabular form for comparison), and future perspectives of nano-based sorbents. Moreover, nanomaterials for adsorptive remediation of pollutants (heavy metals and dyes) are categorized as organic (carbon and graphene-based) and inorganic (metals and metals oxides-based). To increase their adsorption capacity, they can be modified with various functional groups. The adsorption capacity of nanomaterials to adsorb the pollutants depends on pH, adsorbent dosage, pollutants concentration, and contact time. These nanomaterials are a powerful alternative to conventional treatment approaches due to their improved adsorption capacity. However, nanotechnology requires to overcome the environmental concerns and cost-effectiveness of nanomaterials. The regeneration and reuse of nanomaterials can enable it.
Downloads
References
Lu F, Astruc D. Nanomaterials for removal of toxic elements from water. Coord Chem Rev. 2018;356:147-164. https://doi.org/10.1016/j.ccr.2017.11.003
Yu G, Wang X, Liu J, et al. Applications of nanomaterials for heavy metal removal from water and soil: A review. Sustainability. 2021;13(2):713. https://doi.org/10.3390/su13020713
Seliem MK, Barczak M, Anastopoulos I, Giannakoudakis DA. A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies. Nanomaterials. 2020;10(4):684. https://doi.org/10.3390/nano10040684
Sajid M, Jillani SMS, Baig N, Alhooshani K. Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects. Chemosphere. 2022;287:e132140. https://doi.org/10.1016/j.chemosphere.2021.132140
Helgegren I, McConville J, Landaeta G, Rauch S. Importance of internal factors for community-managed water and wastewater systems in Cochabamba, Bolivia. Int J Water Resour Dev. 2020;36(6):1031-1053. https://doi.org/10.1080/07900627.2019.1616536
Subramaniyan A. Oxide nanomaterials for efficient water treatment. advanced research in nanosciences for water technology. Springer; 2019.
Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Role of nanomaterials in water treatment applications: a review. Chem Eng J. 2016;306:1116-1137. https://doi.org/10.1016/j.cej.2016.08.053
Agarwal P, Gupta R, Agarwal N. Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol. 2019;2019:e7392713. https://doi.org/10.1155/2019/7392713
Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
Brame J, Li Q, Alvarez PJ. Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol. 2011;22(11):618-624. https://doi.org/10.1016/j.tifs.2011.01.004
Das R, Ali ME, Abd Hamid SB, Ramakrishna S, Chowdhury ZZ. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination. 2014;336:97-109. https://doi.org/10.1016/j.desal.2013.12.026
Prathna T, Sharma SK, Kennedy M. Nanoparticles in household level water treatment: an overview. Separa Purific Technol. 2018;199:260-270. https://doi.org/10.1016/j.seppur.2018.01.061
Jangid P, Inbaraj MP. Applications of nanomaterials in wastewater treatment. Mater Today: Proc. 2021;43:2877-2881. https://doi.org/10.1016/j.matpr.2021.01.126
Singh S, Kapoor D, Khasnabis S, Singh J, Ramamurthy PC. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environ Chem Lett. 2021;19(3):2351-2381. https://doi.org/10.1007/s10311-021-01196-w
Teow YH, Mohammad AW. New generation nanomaterials for water desalination: A review. Desalination. 2019;451:2-17.
Wang X, Lu J, Xing B. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environ Sci Technol. 2008;42(9):3207-3212. https://doi.org/10.1021/es702971g
Li Y-H, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes. Chem Phy Lett. 2002;357(3-4):263-266. https://doi.org/10.1016/S0009-2614(02)00502-X
Kosa SA, Al-Zhrani G, Salam MA. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J. 2012;181:159-168. https://doi.org/10.1016/j.cej.2011.11.044
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Science Technol. 2008;42(24):9005-9013. https://doi.org/10.1021/es801777n
Yang K, Xing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev. 2010;110(10):5989-6008. https://doi.org/10.1021/cr100059s
Pan B, Lin D, Mashayekhi H, Xing B. Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol. 2008;42(15):5480-5485. https://doi.org/10.1021/es8001184
Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol. 2007;41(24):8295-8300. https://doi.org/10.1021/es071230h
Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol. 2008;42(19):7254-7259. https://doi.org/10.1021/es801297u
Yang K, Wu W, Jing Q, Zhu L. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol. 2008;42(21):7931-7936. https://doi.org/10.1021/es801463v
Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol. 2009;43(7):2322-2327. https://doi.org/10.1021/es803268b
Yu J-G, Zhao X-H, Yang H, et al. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ. 2014;482:241-251. https://doi.org/10.1016/j.scitotenv.2014.02.129
Moradi O. Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fuller Nanotub Carbon Nanostructures. 2013;21(4):286-301. https://doi.org/10.1080/1536383X.2011.572317
Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J. 2011;178:26-33. https://doi.org/10.1016/j.cej.2011.09.127
Mehrizad A, Aghaie M, Gharbani P, Dastmalchi S, Monajjemi M, Zare K. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iran J Environ Health Sci Eng. 2012;9(1):1-6. https://doi.org/10.1186/1735-2746-9-5
Lou JC, Jung MJ, Yang HW, Han JY, Huang WH. Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J Environ Sci Health. 2011;46(12):1357-1365. https://doi.org/10.1080/10934529.2011.606688
Ma J, Yu F, Zhou L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interf. 2012;4(11):5749-5760. https://doi.org/10.1021/am301053m
Bazrafshan E, Mostafapour FK, Hosseini AR, Raksh Khorshid A, Mahvi AH. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem. 2013;2013:e938374. https://doi.org/10.1155/2013/938374
Wang S, Ng CW, Wang W, Li Q, Hao Z. Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J. 2012;197:34-40. https://doi.org/10.1016/j.cej.2012.05.008
Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem Eng J. 2012;179:112-118. https://doi.org/10.1016/j.cej.2011.10.068
Yu F, Wu Y, Li X, Ma J. Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J Agricul Food Chem. 2012;60(50):12245-12253. https://doi.org/10.1021/jf304104z
Yang Q, Chen G, Zhang J, Li H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Adv. 2015;5(32):25541-25549. https://doi.org/10.1039/C4RA15056B
Zhao D, Zhang W, Chen C, Wang X. Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Proc Environ Sci. 2013;18:890-895. https://doi.org/10.1016/j.proenv.2013.04.120
Wang F, Sun W, Pan W, Xu N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem Eng J. 2015;274:17-29. https://doi.org/10.1016/j.cej.2015.03.113
Zhu H, Jiang R, Xiao L, Zeng G. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol. 2010;101(14):5063-5069. https://doi.org/10.1016/j.biortech.2010.01.107
Ncibi MC, Sillanpää M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater. 2015;298:102-110. https://doi.org/10.1016/j.jhazmat.2015.05.025
Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J. 2016;283:936-947. https://doi.org/10.1016/j.cej.2015.08.023
Ma J, Zhuang Y, Yu F. Facile method for the synthesis of a magnetic CNTs–C@ Fe–chitosan composite and its application in tetracycline removal from aqueous solutions. Phy Chem Chem Phy. 2015;17(24):15936-15944. https://doi.org/10.1039/C5CP02542G
Rao GP, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separ Purific Technol. 2007;58(1):224-231. https://doi.org/10.1016/j.seppur.2006.12.006
Li Y-H, Ding J, Luan Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41(14):2787-2792. https://doi.org/10.1016/S0008-6223(03)00392-0
Lu C, Chiu H, Liu C. Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res. 2006;45(8):2850-2855. https://doi.org/10.1021/ie051206h
Musameh MM, Hickey M, Kyratzis IL. Carbon nanotube-based extraction and electrochemical detection of heavy metals. Res Chem Inter. 2011;37(7):675-689. https://doi.org/10.1007/s11164-011-0307-x
Stafiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Separ Purif Technol. 2007;58(1):49-52. https://doi.org/10.1016/j.seppur.2007.07.008
Chen C, Wang X, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol. 2009;43(7):2362-2367. https://doi.org/10.1021/es803018a
Yang S, Li J, Shao D, Hu J, Wang X. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater. 2009;166(1):109-116. https://doi.org/10.1016/j.jhazmat.2008.11.003
Salam MA, Makki MS, Abdelaal MY. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloy Comp. 2011;509(5):2582-2587. https://doi.org/10.1016/j.jallcom.2010.11.094
Vukovic G, Marinkovic A, Čolić M, et al. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J. 2010;157(1):238-248. https://doi.org/10.1016/j.cej.2009.11.026
Zhang X, Huang Q, Liu M, et al. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci. 2015;343:19-27. https://doi.org/10.1016/j.apsusc.2015.03.081
Liu T, Gao B, Fang J, Wang B, Cao X. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb (II) and Cd (II) removal. Rsc Advances. 2016;6(29):24314-24319. https://doi.org/10.1039/C6RA01895E
Xie Y, Huang Q, Liu M, et al. Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv. 2015;5(84):68430-68438. DOI https://doi.org/10.1039/C5RA08908E
Gupta VK, Agarwal S, Bharti AK, Sadegh H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. J Molecul Liq. 2017;230:667-673. https://doi.org/10.1016/j.molliq.2017.01.083
Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater. 2017;336:146-157. https://doi.org/10.1016/j.jhazmat.2017.02.059
Lu C, Liu C. Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol. 2006;81(12):1932-1940. https://doi.org/10.1002/jctb.1626
Stafiej A, Pyrzynska K. Solid phase extraction of metal ions using carbon nanotubes. Microchem J. 2008;89(1):29-33. https://doi.org/10.1016/j.microc.2007.11.001
Anitha K, Namsani S, Singh JK. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J Phys Chem. 2015;119(30):8349-8358. https://doi.org/10.1021/acs.jpca.5b03352
Wang H, Yuan X, Wu Y, et al. Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Coll Inter Sci. 2013;195:19-40. https://doi.org/10.1016/j.cis.2013.03.009
Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906-3924. https://doi.org/10.1002/adma.201001068
Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications. Mater Today. 2012;15(3):86-97. https://doi.org/10.1016/S1369-7021(12)70044-5
Wang S, Sun H, Ang H-M, Tadé M. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J. 2013;226:336-347. https://doi.org/10.1016/j.cej.2013.04.070
Radich JG. Reduced graphene oxide-based nanoassemblies for energy storage applications (PhD dessertaion). Indiana, University of Notre Dame; 2014.
Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H. Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci. 2011;359(1):24-29. https://doi.org/10.1016/j.jcis.2011.02.064
Liu A, Zhou W, Shen K, Liu J, Zhang X. One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Adv. 2015;5(22):17336-17342. https://doi.org/10.1039/C4RA15589K
Baruah S, K Pal S, Dutta J. Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol-Asia. 2012;2(2):90-102. https://doi.org/10.2174/2210681211202020090
Sakuramoto S, Sasako M, Yamaguchi T, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. New Eng J Med. 2007;357(18):1810-1820. https://doi.org/10.1056/NEJMoa072252
Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011;4(6):550-562. https://doi.org/10.1007/s12274-011-0111-3
Hosseinabadi-Farahani Z, Mahmoodi NM, Hosseini-Monfared H. Preparation of surface functionalized graphene oxide nanosheet and its multicomponent dye removal ability from wastewater. Fib Poly. 2015;16(5):1035-1047. https://doi.org/10.1007/s12221-015-1035-4
Catherine HN, Ou M-H, Manu B, Shih Y-h. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. Sci Total Environ. 2018;635:629-638. https://doi.org/10.1016/j.scitotenv.2018.03.389
Tiwari JN, Mahesh K, Le NH, et al. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon. 2013;56:173-182. https://doi.org/10.1016/j.carbon.2013.01.001
Xie G, Xi P, Liu H, et al. A facile chemical method to produce superparamagnetic graphene oxide–Fe 3 O 4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem. 2012;22(3):1033-1039. DOI https://doi.org/10.1039/C1JM13433G
Zhang X, Cheng C, Zhao J, Ma L, Sun S, Zhao C. Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chem Eng J. 2013;215:72-81. https://doi.org/10.1016/j.cej.2012.11.009
Nguyen-Phan T-D, Pham VH, Kim EJ, et al. Reduced graphene oxide–titanate hybrids: morphologic evolution by alkali-solvothermal treatment and applications in water purification. Appl Surf Sci. 2012;258(10):4551-4557. https://doi.org/10.1016/j.apsusc.2012.01.026
Sun L, Yu H, Fugetsu B. Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater. 2012;203:101-110. https://doi.org/10.1016/j.jhazmat.2011.11.097
Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@ graphene nanocomposite. Chem Eng J. 2012;184:326-332. https://doi.org/10.1016/j.cej.2011.12.017
Li N, Zheng M, Chang X, et al. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Sold State Chem. 2011;184(4):953-958. https://doi.org/10.1016/j.jssc.2011.01.014
Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol. 2011;45(24):10454-10462. https://doi.org/10.1021/es203439v
Zhao G, Ren X, Gao X, et al. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transac. 2011;40(41):10945-10952. DOI https://doi.org/10.1039/C1DT11005E
Zhao G, Wen T, Yang X, et al. Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transac. 2012;41(20):6182-6188. https://doi.org/10.1039/C2DT00054G
Gao W, Majumder M, Alemany LB, et al. Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interf. 2011;3(6):1821-1826. https://doi.org/10.1021/am200300u
Lee Y-C, Yang J-W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem. 2012;18(3):1178-1185. https://doi.org/10.1016/j.jiec.2012.01.005
Liu M, Chen C, Hu J, Wu X, Wang X. Synthesis of magnetite/graphene oxide composite and application for cobalt (II) removal. J Phys Chem. 2011;115(51):25234-25240. https://doi.org/10.1021/jp208575m
Xu J, Cao Z, Zhang Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere. 2018;195:351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061
Hu X-j, Liu Y-g, Zeng G-m, et al. Effects of background electrolytes and ionic strength on enrichment of Cd (II) ions with magnetic graphene oxide–supported sulfanilic acid. J Colloid Interface Sci. 2014;435:138-144. https://doi.org/10.1016/j.jcis.2014.08.054
Yang S-T, Chang Y, Wang H, et al. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci. 2010;351(1):122-127. https://doi.org/10.1016/j.jcis.2010.07.042
Li J, Zhang S, Chen C, et al. Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces. 2012;4(9):4991-5000. https://doi.org/10.1021/am301358b
Zhang N, Qiu H, Si Y, Wang W, Gao J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011;49(3):827-837. https://doi.org/10.1016/j.carbon.2010.10.024
Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F. Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir. 2011;27(12):7558-7562. https://doi.org/10.1021/la200606r
Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces. 2012;4(3):1186-1193. https://doi.org/10.1021/am201645g
Chandra V, Kim KS. Highly selective adsorption of Hg 2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun. 2011;47(13):3942-3944. https://doi.org/10.1039/C1CC00005E
Carmalin Sophia A, Lima EC, Allaudeen N, Rajan S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review. Desalination Water Treat. 2016;57(57):27573-27586. https://doi.org/10.1080/19443994.2016.1172989
Kyzas GZ, Bikiaris DN, Seredych M, Bandosz TJ, Deliyanni EA. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly (acrylic acid) grafted chitosan nanocomposite. Bioresour Technol. 2014;152:399-406. https://doi.org/10.1016/j.biortech.2013.11.046
Al-Khateeb LA, Almotiry S, Salam MA. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem Eng J. 2014;248:191-199. https://doi.org/10.1016/j.cej.2014.03.023
Tang Y, Guo H, Xiao L, Yu S, Gao N, Wang Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surfaces. 2013;424:74-80. https://doi.org/10.1016/j.colsurfa.2013.02.030
Nam S-W, Jung C, Li H, et al. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere. 2015;136:20-26. https://doi.org/10.1016/j.chemosphere.2015.03.061
Khalil AM, Han L, Maamoun I, et al. Novel Graphene‐Based Foam Composite As a Highly Reactive Filter Medium for the Efficient Removal of Gemfibrozil from (Waste) Water. Adv Sustain Sys. 2022;6(8):e2200016. https://doi.org/10.1002/adsu.202200016
Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012;368(1):540-546. https://doi.org/10.1016/j.jcis.2011.11.015
Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H. An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng. 2016;2016:e4964828. https://doi.org/10.1155/2016/4964828
Nassar NN. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J Hazardous Mater. 2010;184(1-3):538-546. https://doi.org/10.1016/j.jhazmat.2010.08.069
Ambashta RD, Sillanpää M. Water purification using magnetic assistance: A review. J Hazard Mater. 2010;180(1-3):38-49. https://doi.org/10.1016/j.jhazmat.2010.04.105
Sadegh H, Ali GA, Gupta VK, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanost Chem. 2017;7(1):1-14. https://doi.org/10.1007/s40097-017-0219-4
Bystrzejewski M, Pyrzyńska K, Huczko A, Lange H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon. 2009;47(4):1201-1204. https://doi.org/10.1016/j.carbon.2009.01.007
Xu P, Zeng GM, Huang DL, et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ. 2012;424:1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023
Zhang L, Fang M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today. 2010;5(2):128-142. https://doi.org/10.1016/j.nantod.2010.03.002
Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. J Hazardous Mater. 2011;185(1):463-471. https://doi.org/10.1016/j.jhazmat.2010.09.055
Zhang S, Niu H, Hu Z, Cai Y, Shi Y. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromato. 2010;1217(29):4757-4764. https://doi.org/10.1016/j.chroma.2010.05.035
Kataria N, Garg V, Jain M, Kadirvelu K. Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv Powder Technol. 2016;27(4):1180-1188. https://doi.org/10.1016/j.apt.2016.04.001
Azizi S, Mahdavi Shahri M, Mohamad R. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules. 2017;22(6):e831. https://doi.org/10.3390/molecules22060831
Sowjanya B, Sirisha U, Juttuka AS, Matla S, King P, Vangalapati M. Synthesis and characterization of zinc oxide nanoparticles: It’s application for the removal of alizarin red S dye. Materials Today: Proceedings. 2022;62:3968-3972. https://doi.org/10.1016/j.matpr.2022.04.576
Mansour AT, Alprol AE, Khedawy M, et al. Green Synthesis of Zinc Oxide Nanoparticles Using Red Seaweed for the Elimination of Organic Toxic Dye from an Aqueous Solution. Materials. 2022;15(15):e5169. https://doi.org/10.3390/ma15155169
Zhang X, Wang Y, You Y, Meng H, Zhang J, Xu X. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes. Appl Surface Sci. 2012;263:660-665. https://doi.org/10.1016/j.apsusc.2012.09.131
Mittal H, Ray SS. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. International journal of biological Macromolecules. 2016;88:66-80. https://doi.org/10.1016/j.ijbiomac.2016.03.032
Kakhki RM, Hedayat S, Mohammadzadeh K. Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. J Mater Sci. 2019;30(9):8788-8795. https://doi.org/10.1007/s10854-019-01203-5
Pradhan SK, Pareek V, Panwar J, Gupta S. Synthesis and characterization of ecofriendly silver nanoparticles combined with yttrium oxide (Ag-Y2O3) nanocomposite with assorted adsorption capacity for Cu (II) and Cr (VI) removal: A mechanism perspective. J Water Process Eng. 2019;32:e100917. https://doi.org/10.1016/j.jwpe.2019.100917
Zhu H, Jia Y, Wu X, Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172(2-3):1591-1596. https://doi.org/10.1016/j.jhazmat.2009.08.031
Gautam RK, Rawat V, Banerjee S, et al. Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J Molecul Liq. 2015;212:227-236. https://doi.org/10.1016/j.molliq.2015.09.006
Sarma GK, Gupta SS, Bhattacharyya KG. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ Sci Pollution Res. 2019;26(7):6245-6278. https://doi.org/10.1007/s11356-018-04093-y
Punia P, Aggarwal R, Kumar R, Dhar R, Thakur P, Thakur A. Adsorption of Cd and Cr ions from industrial wastewater using Ca doped Ni–Zn nanoferrites: Synthesis, characterization and isotherm analysis. Ceramics Int. 2022;48(13):18048-18056. https://doi.org/10.1016/j.ceramint.2022.02.234
Nait-Merzoug A, Guellati O, Djaber S, et al. Ni/Zn Layered Double Hydroxide (LDH) Micro/Nanosystems and Their Azorubine Adsorption Performance. Appl Sci. 2021;11(19):e8899. https://doi.org/10.3390/app11198899
Grossl PR, Sparks DL, Ainsworth CC. Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ Sci Technol. 1994;28(8):1422-1429. https://doi.org/10.1021/es00057a008
Chen Y-H, Li F-A. Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci. 2010;347(2):277-281. https://doi.org/10.1016/j.jcis.2010.03.050
Huang S-H, Chen D-H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater. 2009;163(1):174-179. https://doi.org/10.1016/j.jhazmat.2008.06.075
Ozmen M, Can K, Arslan G, Tor A, Cengeloglu Y, Ersoz M. Adsorption of Cu (II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination. 2010;254(1-3):162-169. https://doi.org/10.1016/j.desal.2009.11.043
Ren Y, Yan N, Wen Q, et al. Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J. 2011;175:1-7. https://doi.org/10.1016/j.cej.2010.08.010
Wang Z, Wu D, Wu G, Yang N, Wu A. Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J Hazard Mater. 2013;244:621-627.
Engates KE, Shipley HJ. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res. 2011;18(3):386-395. https://doi.org/10.1016/j.jhazmat.2012.10.050
Hu J, Lo IM, Chen G. Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles. Separ Purific Technol. 2007;58(1):76-82. https://doi.org/10.1016/j.seppur.2007.07.023
Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J Hazard Mater. 2010;181(1-3):836-844. https://doi.org/10.1016/j.jhazmat.2010.05.089
Visa M, Carcel RA, Andronic L, Duta A. Advanced treatment of wastewater with methyl orange and heavy metals on TiO2, fly ash and their mixtures. Catalysis Today. 2009;144(1-2):137-142. https://doi.org/10.1016/j.cattod.2008.12.032
Zhang F, Chen X, Wu F, Ji Y. High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids Surf Physicochem Eng Asp. 2016;509:474-483.
Abdel Ghafar HH, Ali GA, Fouad OA, Makhlouf SA. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination Water Treat. 2015;53(11):2980-2989. https://doi.org/10.1080/19443994.2013.871343
Li J, Ng DH, Song P, Song Y, Kong C. Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye. J Industrial Eng Chem. 2015;23:290-298. https://doi.org/10.1016/j.jiec.2014.08.031
Copyright (c) 2022 Mubeen Ashraf, Amina Khan, Mubashar Alam, Tahreem Saleem, Jamshaid Ashraf
This work is licensed under a Creative Commons Attribution 4.0 International License.