Recent Developments regarding Lacunary ∆-Statistical Convergence in Neutrosophic n-Normed Linear Spaces

  • J. Maduraiveeran P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, affiliated to Alagappa University, Sivagangai, India
  • S. Satheesh Kanna P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, affiliated to Alagappa University, Sivagangai, India
  • B. Silamparasan P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, affiliated to Alagappa University, Sivagangai, India
  • J. Johnsy P.G. and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, affiliated to Alagappa University, Sivagangai, India
Keywords: cauchy sequence, lacunary sequence, normed space, statistical convergence

Abstract

Abstract Views: 142

The current paper's goal is to introduce lacunary ∆-statistically convergent and lacunary ∆-statistically Cauchy sequences in neutrosophic n-normed linear spaces, examine them and come to some significant conclusions about them. Also, we prove several useful results for these notions. We demonstrate how sequences in this space have some characteristics with lacunary ∆-statistical convergence of real sequences. In contrast to other related works, we define the concept of convergence of a sequence in neutrosophic n-normed linear spaces in this study. We have also established the results using a new methodology. Additionally, we provide some novel descriptions for lacunary sequences that are ∆-statistically convergent and Cauchy. We demonstrate some inclusion results between the set of ∆-statistically convergent and lacunary ∆-statistically convergent sequences in neutrosophic n-normed linear spaces by generalizing the concepts for complex number sequences.

Downloads

Download data is not yet available.

References

Zadeh LA. Fuzzy sets. Inf. Control. 1965;8(3):338-353.https://doi.org/10.1016/S0019- 9958(65)90241-X

Kim SS, Cho YJ. Strict convexity in linear n-normed spaces. Demonstr Math. 1996;29(4):739 744.https://doi.org/10.1515/dema-1996-0408

Malceski R. Strong n-convex n-normed spaces.Mat Bilt. 1997;21:81-102.

Gunawan H, Mashadi M. On n-normed spaces. Int J Math Sci. 2001;27:e965397. https://doi.org/10.1155/S0161171201010675

Vijayabalaji S, Narayanan A. Fuzzy n-normed linear space.J Math Sci. 2005;24:e640286.https://doi.org/10.1155/IJMMS.2005.3963

Schweizer B, Sklar A. Statistical metric spaces.Pac J Math.1960;10(1):313-334.

Atanassov K.Intuitionistic fuzzy sets. Fuzzy Sets Sys. 1986;20:87-96.

Saadati R, Park JH. Intuitionistic fuzzy Euclidean normed spaces. Commun Math Anal. 2006;12:85-90.

Vijayabalaji S, Thillaigovindan N, Jun YB. Intuitionistic fuzzy n-normed linear space. Bull Korean Mat Soc. 2007;44(2):291- 308.https://doi.org/10.4134/BKMS.2007.44.2.291

Fridy JA, Orhan C. Lacunary statistical convergence. Pac J Math. 1993:160:43-51.

Mursaleen M, Mohiuddine SA. On Lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J Comput Appl Math. 2009;233(2):142- 149.https://doi.org/10.1016/j.cam.2009.07.005

Schweizer B, Sklar A. Statistical metric spaces.PacJMath.1960;10(1):313-334.

Basarir M. On the statistical convergence of sequences. Firat Univ J Sci. 1995;7(2):1-6.

Bilgin T. Lacunary strongly -convergent sequences of fuzzy numbers. Inf Sci. 2004;160:201-206.

Smarandache F. Neutrosophic set, Ageneralisation of the intuitionistic fuzzy sets.Int J Pure Appl Math. 2005;24:287-297.

Smarandache F. Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis.American Research Press, Michigan , USA; 1998.

Simsek N, Kirisci M. Fixed point theorems in Neutrosophic Metric Spaces.Sigma J Eng Nat Sci. 2019;10(2):221-230.

Ali U, Ishtiaq U, Ahmad K. Statistically Convergent Sequences in Neutrosophic Metric Spaces. Sci Inquiry Re. 2022;6(1):2521-2435.https://doi.org/10.32350/sir.61.03

Ali U,Alyousef HA,Ishtiaq U, Ahmed K,Ali S. Solving nonlinear fractional differential equations for contractive and weakly compatible mappings in neutrosophic metric spaces. J Func Spac. 2022;2022:e1491683.https://doi.org/10.1155/2022/1491683

Sowndrarajan S, Jeyaraman M, Smarandache F. Fixed point theorems in neutrosophic metric spaces.Neutroso Set Sys. 2020;36:251-268.

Jeyaraman M, Mangayarkkarasi AN, Jeyanthi V, Pandiselvi R. Hyers ulam-rassias stability for functional equation in Neutrosophic normed spaces.Int J Neutroso Sci. 2022;18(1):127-143.

Jeyaraman M, Ramachandran A, Shakila VB. Approximate fixed point Theorems for weak contractions on Neutrosophic normed space.J Comput Math. 2022;6(1):134-158.

Published
2022-09-15
How to Cite
1.
Maduraiveeran J, S. Satheesh Kanna, B. Silamparasan, J. Johnsy. Recent Developments regarding Lacunary ∆-Statistical Convergence in Neutrosophic n-Normed Linear Spaces. Sci Inquiry Rev. [Internet]. 2022Sep.15 [cited 2024Nov.24];6(3):61-8. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/2916
Section
Orignal Article