Extension of Some Common Fixed-Point Theorems in Neutrosophic Metric Spaces Via Control Function
Abstract
Abstract Views: 204The aim of this paper is to prove some important fixed-point theorems in the context of the neutrosophic metric space, which is a generalization of the fuzzy Banach fixed-point theorem, by utilizing the control function. Also, certain fixed-point theorems in the G-complete neutrosophic metric space are proved and discussed by utilizing the alternating distance function (ADF) and defined neutrosophic -weak contraction. The current study supports the results with some non-trivial examples. Furthermore, it also supports the main result with an application of the Fredholm integral equation.
Downloads
References
Zadeh LA. Fuzzy sets. Info Cont. 8;1965.
Atanassov K. Intuitionistic fuzzy sets, fuzzy sets and systems.1986;20:87-96.
Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solit Frac. 2006;29(5):1073–1078. https://doi.org/10.1016/j.chaos.2005.08.066
Kramosil I, Michalek J. Fuzzy metric and statistical metric spaces. Kybernetika. 1975;11:336-344.
Park JH. Intuitionistic fuzzy metric space. Chaos Solit Frac. 2004;22(5):1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051
Turkoglu D, Alaca C, Yildiz C. Compatible Maps and Compatible Maps of Types (σ )and (β ) in intuitionistic fuzzy metric spaces. Demonstr Math. 2006;39(3):671-684. https://doi.org/10.1515/dema- 2006-0323
Khan MS, Swaleh M, Sessa S. Fixed points theorems by altering distances between the points. Bull Aust Math Soc. 1984;30(1):1-9. https://doi.org/10.1017/S0004972700001659
Kumar S, Garg SK, Vats RK. Fixed point theorems for coincidence maps in Intuitionistic fuzzy metric space. Int J Math Anal. 2010;11(4):537-545.
Saleem N, Agwu IK, Ishtiaq U, Radenović S. Strong convergence theorems for a finite family of enriched strictly pseudo contractive mappings and Φ t-enriched Lipschitizian mappings using a new modified mixed-type Ishikawa iteration scheme with error. Symmetry. 2022;14(5):e1032. https://doi.org/10.3390/sym14051032
Saleem N, Javed K, Uddin F, Ishtiaq U, Ahmed K, Abdeljawad T, Alqudah MA. (2022). Unique Solution of Integral Equations via Intuitionistic Extended Fuzzy b-Metric-Like Spaces. Comp Model Eng Sci. 2022;135:1-23. https://doi.org/10.32604/cmes.2022.021031
Ali U, Alyousef HA, Ishtiaq U, Ahmed K, Ali S. Solving nonlinear fractional differential equations for contractive and weakly compatible mappings in neutrosophic metric spaces. J Func Spac. 2022;2022:e1491683. https://doi.org/10.1155/2022/1491683
Al-Omeri WF, Jafari S, Smarandache F. Weak contractions in neutrosophic cone metric spaces via fixed point theorems. Math Prob Eng. 2020;2020:e9216805. https://doi.org/10.1155/2020/9216805
Al-Omeri WF, Jafari S, Smarandache F. Neutrosophic fixed point theorems and cone metric spaces. Neutroso Set Sys. 2019;31.
Hussain A, Ishtiaq U, Ahmed K, Al-Sulami H. On pentagonal controlled fuzzy metric spaces with an application to dynamic market equilibrium. J Func Spac. 2022;2022:e5301293. https://doi.org/10.1155/2022/5301293
Jhangeer, A., Faridi, W. A., Asjad, M. I., & Inc, M. (2022). A comparative study about the propagation of water waves with fractional operators (in press). J Ocean Eng Sci. 2022. https://doi.org/10.1016/j.joes.2022.02.010
Asjad MI, Faridi WA, Jhangeer A, Ahmad H, Abdel-Khalek S, Alshehri N. Propagation of some new traveling wave patterns of the double dispersive equation. Open Phy. 2022;20(1):130-141. https://doi.org/10.1515/phys-2022-0014.
Zhang XZ, Asjad MI, Faridi WA, Jhangeer A, Inc M. The comparative report on dynamical analysis about fractional nonlinear drinfeld-sokolov-wilson system. Fractals. 2022;30(5):e2240138.
https://doi.org/10.1142/S0218348X22401387
Asjad MI, Faridi WA, Jhangeer A, Aleem M, Yusuf A, Alshomrani AS, Baleanu D. Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing. AIMS Mathematics, 2022;7(5):8290-8313. https://doi.org/10.3934/math.2022462
Beg I, Vetro C, Gopal D, Imdad M. (φ, Ψ)-weak contractions in intuitionistic fuzzy metric spaces. J Intell Fuzzy Sys. 2014;26(5):2497–2504. https://doi.org/10.3233/IFS-130920
Kirişci M, Simsek N. Neutrosophic metric spaces. Mathe Sci. 2020;14:241-248. https://doi.org/10.1007/s40096-020-00335-8
Sowndrarajan S, Jeyarama M, Smarandache F. Fixed point results for contraction theorems in neuromorphic metric spaces. Neutros Sets Sys. 2020;36:310-318.
Schweizer B, Sklar A. Statistical metric spaces. Pacific J Math. 1960;10:313-334.
Jungck G, Rhoades BE. Fixed point for set valued function without continuity. J Pure Appl Math. 1998;29(3):227-238.
Gregori V, Sapena A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Sys. 2002;125(2):245–253.
Copyright (c) 2022 Usman Ali, Umar Ishtiaq, Zill E Shams, Khaleel Ahmad, Mohammad Irfan Haider, Muhammad Zeeshan Shafi
This work is licensed under a Creative Commons Attribution 4.0 International License.