Extension of Some Common Fixed-Point Theorems in Neutrosophic Metric Spaces Via Control Function

  • Usman Ali Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
  • Umar Ishtiaq Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore, Pakistan
  • Zill E Shams Department of Mathematics the Women University Multan, Pakistan
  • Khaleel Ahmad Department of Mathematics and statistics, International Islamic University Islamabad, Pakistan
  • Mohammad Irfan Haider Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
  • Muhammad Zeeshan Shafi Department of Computer Science, Islamia University of Bahawalpur, Pakistan
Keywords: fixed-point, control function, neutrosophic metric space, (Φ ,Ψ )-weak contraction

Abstract

Abstract Views: 204

The aim of this paper is to prove some important fixed-point theorems in the context of the neutrosophic metric space, which is a generalization of the fuzzy Banach fixed-point theorem, by utilizing the control function. Also, certain fixed-point theorems in the G-complete neutrosophic metric space are proved and discussed by utilizing the alternating distance function (ADF) and defined neutrosophic -weak contraction. The current study supports the results with some non-trivial examples. Furthermore, it also supports the main result with an application of the Fredholm integral equation.

Downloads

Download data is not yet available.

References

Zadeh LA. Fuzzy sets. Info Cont. 8;1965.

Atanassov K. Intuitionistic fuzzy sets, fuzzy sets and systems.1986;20:87-96.

Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solit Frac. 2006;29(5):1073–1078. https://doi.org/10.1016/j.chaos.2005.08.066

Kramosil I, Michalek J. Fuzzy metric and statistical metric spaces. Kybernetika. 1975;11:336-344.

Park JH. Intuitionistic fuzzy metric space. Chaos Solit Frac. 2004;22(5):1039-1046. https://doi.org/10.1016/j.chaos.2004.02.051

Turkoglu D, Alaca C, Yildiz C. Compatible Maps and Compatible Maps of Types (σ )and (β ) in intuitionistic fuzzy metric spaces. Demonstr Math. 2006;39(3):671-684. https://doi.org/10.1515/dema- 2006-0323

Khan MS, Swaleh M, Sessa S. Fixed points theorems by altering distances between the points. Bull Aust Math Soc. 1984;30(1):1-9. https://doi.org/10.1017/S0004972700001659

Kumar S, Garg SK, Vats RK. Fixed point theorems for coincidence maps in Intuitionistic fuzzy metric space. Int J Math Anal. 2010;11(4):537-545.

Saleem N, Agwu IK, Ishtiaq U, Radenović S. Strong convergence theorems for a finite family of enriched strictly pseudo contractive mappings and Φ t-enriched Lipschitizian mappings using a new modified mixed-type Ishikawa iteration scheme with error. Symmetry. 2022;14(5):e1032. https://doi.org/10.3390/sym14051032

Saleem N, Javed K, Uddin F, Ishtiaq U, Ahmed K, Abdeljawad T, Alqudah MA. (2022). Unique Solution of Integral Equations via Intuitionistic Extended Fuzzy b-Metric-Like Spaces. Comp Model Eng Sci. 2022;135:1-23. https://doi.org/10.32604/cmes.2022.021031

Ali U, Alyousef HA, Ishtiaq U, Ahmed K, Ali S. Solving nonlinear fractional differential equations for contractive and weakly compatible mappings in neutrosophic metric spaces. J Func Spac. 2022;2022:e1491683. https://doi.org/10.1155/2022/1491683

Al-Omeri WF, Jafari S, Smarandache F. Weak contractions in neutrosophic cone metric spaces via fixed point theorems. Math Prob Eng. 2020;2020:e9216805. https://doi.org/10.1155/2020/9216805

Al-Omeri WF, Jafari S, Smarandache F. Neutrosophic fixed point theorems and cone metric spaces. Neutroso Set Sys. 2019;31.

Hussain A, Ishtiaq U, Ahmed K, Al-Sulami H. On pentagonal controlled fuzzy metric spaces with an application to dynamic market equilibrium. J Func Spac. 2022;2022:e5301293. https://doi.org/10.1155/2022/5301293

Jhangeer, A., Faridi, W. A., Asjad, M. I., & Inc, M. (2022). A comparative study about the propagation of water waves with fractional operators (in press). J Ocean Eng Sci. 2022. https://doi.org/10.1016/j.joes.2022.02.010

Asjad MI, Faridi WA, Jhangeer A, Ahmad H, Abdel-Khalek S, Alshehri N. Propagation of some new traveling wave patterns of the double dispersive equation. Open Phy. 2022;20(1):130-141. https://doi.org/10.1515/phys-2022-0014.

Zhang XZ, Asjad MI, Faridi WA, Jhangeer A, Inc M. The comparative report on dynamical analysis about fractional nonlinear drinfeld-sokolov-wilson system. Fractals. 2022;30(5):e2240138.

https://doi.org/10.1142/S0218348X22401387

Asjad MI, Faridi WA, Jhangeer A, Aleem M, Yusuf A, Alshomrani AS, Baleanu D. Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing. AIMS Mathematics, 2022;7(5):8290-8313. https://doi.org/10.3934/math.2022462

Beg I, Vetro C, Gopal D, Imdad M. (φ, Ψ)-weak contractions in intuitionistic fuzzy metric spaces. J Intell Fuzzy Sys. 2014;26(5):2497–2504. https://doi.org/10.3233/IFS-130920

Kirişci M, Simsek N. Neutrosophic metric spaces. Mathe Sci. 2020;14:241-248. https://doi.org/10.1007/s40096-020-00335-8

Sowndrarajan S, Jeyarama M, Smarandache F. Fixed point results for contraction theorems in neuromorphic metric spaces. Neutros Sets Sys. 2020;36:310-318.

Schweizer B, Sklar A. Statistical metric spaces. Pacific J Math. 1960;10:313-334.

Jungck G, Rhoades BE. Fixed point for set valued function without continuity. J Pure Appl Math. 1998;29(3):227-238.

Gregori V, Sapena A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Sys. 2002;125(2):245–253.

https://doi.org/10.1016/S0165-0114(00)00088-9

Published
2022-09-15
How to Cite
1.
Usman Ali, Umar Ishtiaq, Zill E Shams, Khaleel Ahmad, Mohammad Irfan Haider, Muhammad Zeeshan Shafi. Extension of Some Common Fixed-Point Theorems in Neutrosophic Metric Spaces Via Control Function. Sci Inquiry Rev. [Internet]. 2022Sep.15 [cited 2024Dec.22];6(3):19-5. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/3028
Section
Orignal Article