Synthesis, Properties, and Applications of Carbon Nanotubes: An Overview
Abstract
Abstract Views: 0The current study attempts to review the literature concerning the synthesis, properties, and application of carbon nanotubes (CNTs). The methods used to produce carbon nanotubes include laser ablation, electric arc discharge, chemical vapor deposition, plasma-enhanced chemical vapor deposition, pulsed laser deposition, use of low-frequency ultrasound waves, heating a bulk polymer, and bulk sputtering. CNTs have excellent mechanical and thermal properties that strongly depend upon their structure. Functionalized magnetic CNTs are involved in magnetic force microscopy used in biomedicine. The liquid and plastic limit of kaolinite can be increased by adding CNTs to it. In the medical field, CNTs have numerous applications including gene delivery to cells, cancer therapy, drug delivery, and tissue regeneration. Their antioxidant nature also enables them to be used in cosmetic products and in the field of dermatology. They are also used to purify the environment, water, and in modern food-packaging technology. The sensors containing CNTs composite pellets are sensitive to gases, such as NH3, CO2, and CO H2O. CNTs are used to construct gas containers for hydrogen storage. They are also considered ideal for structural applications and their properties can be improved by making their composites with metals. Such metals may be introduced into the core of CNTs by different methods including solid-state reaction, arc-discharge method, and electrochemical techniques. The value of absorbed hydrogen gas in CNTs varies between 0.4 and 67 mass %. Recent advances encourage more research on CNTs to increase their clinical applications in the future.
Downloads
References
Karthik P, Himaja A, Singh SP. Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 2014;15(4):219–237. https://doi.org/10.5714/CL.2014.15.4.219
Zhu S, Sheng J, Chen Y, Ni J, Li Y. Carbon nanotubes for flexible batteries: recent progress and future perspective. Nat Sci Rev. 2021;8(5):nwaa261. https://doi.org/10.1093/nsr/nwaa261
Saito R, GD, Dresselhaus G, Dresselhaus MS. Physical properties of carbon nanotubes. London; Imperial College Press; 1998.
Chen J, Hamon MA, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science. 1998;282(5386):95–98. https://doi.org/10. 1126/science.282.5386.95
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105–1136. https://doi.org/ 10.1021/cr050569o
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–539. https://doi.org/10.1126/science.1222453
Javed M, Abbas SM, Hussain S, Siddiq M, Han D, Niu L. Amino-functionalized silica anchored to multiwall carbon nanotubes as hybrid electrode material for supercapacitors. Mat Sci Energy Technol. 2018;1(1):70–76. https://doi.org/10.1016/j.mset.2018.03.002
Munir M, Hussain S, Anwar R, Waqas M, Ali J. The role of nanoparticles in the diagnosis and treatment of diseases. Scie Inq Rev. 2020;4(3):14–26. https://doi.org/10.32350/sir.43.02
Shahzad K. synthesis, characterization, and photocatalytic degradation of nickel doped copper oxide nanoparticles. Lahore Garrison Univ J Life Sci. 2020;4(02):130–138. https://doi.org/10. 54692/lgujls.2019.0402103
Iqbal MF, Yousef AK, Hassan A, et al. Significantly improved electrochemical characteristics of nickel sulfide nanoplates using graphene oxide thin film for supercapacitor applications. J Energy Storage. 2021;33:e102091. https://doi.org/10.1016/j.est.2020.102091
Singh E, Srivastava R, Kumar U, Katheria AD. Carbon nanotube: A review on introduction, fabrication techniques and optical applications. Nanosci Nanotechnol Res. 2017;4(4):120–126.
Akbari GH, Mirabootalebi SO. Methods for synthesis of carbon nanotubes. Int J Bio-Inorg Hybr Nanomater. 2017;6(2):1–10.
Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB. Synthesis methods of carbon nanotubes and related materials. Materials. 2010;3(5):3092–140. https://doi.org/10.3390/ma3053092
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):eD393.
Ando Y, Zhao X. Synthesis of carbon nanotubes by arc-discharge method. New Diamond Front Carbon Technol. 2006;16(3):123–138.
Sharma R, Sharma AK, Sharma V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng. 2015;2(1):e1094017. https://doi.org/10.1080 /23311916.2015.1094017
Rashad AA, Mohammed SA, Yousif E. Synthesis of carbon nanotube : A review. J Nanosci Technol. 2016;2(5):e7.
Awasthi K, Srivastava A, Srivastava ON. Synthesis of carbon nanotubes. J Nanosci Nanotechnol. 2005;5(10):1616–1636. https://doi.org/10.1166/jnn.2005.407
Rafique MMA, Iqbal J. Production of carbon nanotubes by different routes—a review. J Encapsul Adsorp Sci. 2011;1:29–34. https://doi. org/10.4236/jeas.2011.11004
Chrzanowska J, Hoffman J, Małolepszy A, et al. Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Physica Status Solidi (b). 2015;252(8):1860–1867. https://doi.org /10.1002/pssb.201451614
Mahajan D. Carbon nanotubes: a review on synthesis, electrical and mechanical properties and applications. Asian J Appl Sci Technol. 2017;1(7):15–20.
van de Burgt Y. Laser-assisted growth of carbon nanotubes—a review. J Laser Appl. 2014;26(3):e032001. https://doi.org/10.2351 /1.4869257
Emmenegger C, Bonard JM, Mauron P, et al. Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon. 2003;41(3):539–547. https://doi.org/10. 1016/S0008-6223(02)00362-7
Yadav BC, Kumar R, Srivastava R, Shukla T. Flame Synthesis of Carbon Nanotubes using Camphor and its Characterization. Intl J Green Nanotechnol. 2011;3(3):170–179. https://doi.org/10.1080/ 19430892.2011.628579
Ibrahim KS. Carbon nanotubes-properties and applications: a review. Korea Sci. 2013;14(3):131–144.
Bode Y. Vibration Analysis of Coupled Coaxial Carbon Nanotube With Damping In The Presence Of Graphene Sheet (master's thesis) University of Akron; 2018.
Varshney K. Carbon nanotubes: A review on synthesis, properties and applications. Int J Eng Res General Sci. 2015;2(4):660–670.
Fonseca A, Hernadi K, Nagy JB, Bernaerts D, Lucas AA. Optimization of catalytic production and purification of buckytubes. J Molecul Catal A: Chemical. 1996;107(1):159–168. https://doi.org /10.1016/1381-1169(95)00211-1
Collins PG, Avouris P. Nanotubes for electronics. Sci Am. 2000;283(6):62–69.
Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol. 2010;10(6):3739–3758. https://doi.org/10.1166/jnn. 2010.2939
Eftekhari A, Jafarkhani P, Moztarzadeh F. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition. Carbon. 2006;44(7):1343–1345. https://doi.org/10.1016/j.carbon.2005.12.006
Franz G. Plasma enhanced chemical vapor deposition of organic polymers. Processes. 2021;9(6):e980. https://doi.org/10.3390 /pr9060980
Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific J Can Preven. 2014;15(2):517–535. http://dx.doi.org/10.7314/APJCP. 2014.15.2.517
Jagadeesan AK, Thangavelu K, Dhananjeyan V. Carbon Nanotubes: Synthesis, Properties and Applications. IntechOpen; 2020.
Price GJ, Nawaz M, Yasin T, Bibi S. Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance. Ultrason Sonochem. 2018;40:123–130. https://doi.org/10.1016/j. ultsonch.2017.02.021
Cho WS, Hamada E, Kondo Y, Takayanagi K. Synthesis of carbon nanotubes from bulk polymer. Appl Phy Lett. 1996;69(2):278–279. https://doi.org/10.1063/1.117949
Tran TQ, Lee JKY, Chinnappan A, et al. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods. J Mater Sci Technol. 2020;40:99–106. https://doi.org/10.1016/j.jmst.2019.08.033
Chapin JS. Sputtering Process and Apparatus. Google Patents; 1979.
Ogura I, Kotake M, Hashimoto N, Gotoh K, Kishimoto A. Release characteristics of single-wall carbon nanotubes during manufacturing and handling. J Phy: Conf Ser. 2013;429:e012057. https://doi.org/10. 1088/1742-6596/429/1/012057
Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V. Carbon nanotubes and its applications: a review. Asian J Pharmac Clinic Res. 2009;2(4):17–27.
Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021;3(20):5722–5744. https://doi.org/10.1039/ D1NA00293G
Sawant SV, Patwardhan AW, Joshi JB, Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications–a review. Chem Eng J. 2022;427:e131616. https://doi. org/10.1016/j.cej.2021.131616
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2012;2013:e676815. https://doi.org/10.1155/2013/676815
Odom TW, Huang J-L, Kim P, Lieber CM. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998;391(6662):62–64. https://doi.org/10.1038/34145
Wallace P. The band structure of graphite. Phys Rev. 1947;71(9):622–634.
Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. Elsevier; 1996.
Salvetat J-P, Bonard J-M, Thomson N, et al. Mechanical properties of carbon nanotubes. Appl Phy. 1999;69(3):255–260. https://doi.org/10. 1007/s003390050999
Ashby MF. Overview no. 80: on the engineering properties of materials. Acta Metallur. 1989;37(5):1273–1293. https://doi.org/10. 1016/0001-6160(89)90158-2
Hone J, Llaguno, M., Biercuk, M. et al. Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A, 2002;74: 339–343. https://doi.org/10.1007/s003390201277
Che J, Çagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000;11(2):65–69. https://doi.org/10. 1088/0957-4484/11/2/305
Llaguno MC, Hone J, Johnson AT, Fischer JE. Thermal conductivity of single wall carbon nanotubes: Diameter and annealing dependence. AIP Conf Proc. 2001;591(1):384–387. https://doi.org/10. 1063/1.1426893
Choi S, Zhang Z, Yu W, Lockwood F, Grulke E. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phy lett. 2001;79(14):2252–2254. https://doi.org/10.1063/1.1408272
Small JP, Shi L, Kim P. Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun. 2003;127(2):181–186. https://doi.org/10.1016/S0038-1098(03)00341-7
Mönch I, Leonhardt A, Meye A, et al. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. J Phy. 2007;61:820–824. https://doi.org/10.1088/1742-6596/61/1/164
Lu JP. Novel magnetic properties of carbon nanotubes. Phy Rev Lett. 1995;74(7):e1123.
Ramirez A, Haddon R, Zhou O, et al. Magnetic susceptibility of molecular carbon: nanotubes and fullerite. Science. 1994;265(5168):84–86. https://doi.org/10.1126/science.265.5168.84
Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyper. 2008;24(6):496–505. https://doi.org/10.1080 /02656730802154786
Ponnamma D, Ninan N, Thomas S. Carbon nanotube tube filled polymer nanocomposites and their applications in tissue engineering. In Applications of Nanomaterials: Advances and Key Technologies. Elsevier; 2018:391–414. https://doi.org/10.1016/B978-0-08-101971-9.00014-4
El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi‐Fehri O. Mechanical, thermal, and rheological properties of graphene‐based polypropylene nanocomposites prepared by melt mixing. Polym Comp. 2012;33(5):733–744. https://doi.org/ 10.1002/pc.22198
Dalton AB, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres. Nature. 2003;423(6941):e703. https://doi.org/10.1038/423703a
Liu T, Phang IY, Shen L, Chow SY, Zhang W-D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules. 2004;37(19):7214–7222. https://doi.org/10.1021/ma049132t
Karim MR, Lee CJ, Park Y-T, Lee MS. SWNTs coated by conducting polyaniline: synthesis and modified properties. Synth Met. 2005;151(2):131–135. https://doi.org/10.1016/j.synthmet.2005.03.012
Hussain S, Amjad M. A review on gold nanoparticles (GNPs) and their Advancement in cancer therapy. Int J Nanom Nanotechnol Nanomed. 2021;7(1):019–025. https://dx.doi.org/10.17352/2455-3492.000040
Hussain S, Amjad M, Khan A, et al. A Perspective Study on Copper Oxide Nanoparticles and Their Role in Different Fields of Biomedical Sciences. Int J Sci Res Eng Develop. 2020;3(6):1246–1256.
Zulfiqar H, Hussain S, Riaz M, et al. Nature of nanoparticles and their applications in targeted drug delivery. Pak J Sci. 2020;72(1):30–36.
Mueez A, Hussain S, Ahmad M, Raza A, Ahmed I, Amjad M. Green synthesis of nanosilver particles from plants extract. Int J Agricul Environ Biores. 2022;7(1):96–122.
Rehman H, Ali Z, Hussain M, et al. Synthesis and characterization of ZnO nanoparticles and their use as an adsorbent for the arsenic removal from drinking water. Dig J Nanomat Biostruc. 2019;14(4):1033–1040.
Abbas SM, Ahmad N, Rana UA, et al. High rate capability and long cycle stability of Cr2O3 anode with CNTs for lithium ion batteries. Electroch Acta. 2016;212:260–269. https://doi.org/10.1016 /j.electacta.2016.06.156
Raza MW, Kiran S, Razaq A, et al. Strategy to enhance the electrochemical characteristics of lanthanum sulfide nanorods for supercapacitor applications. J Nanopart Res. 2021;23(9):1–12. https://doi.org/10.1007/s11051-021-05307-0
Javed M, Hussain S. Synthesis, characterization and photocatalytic applications of p (aac) microgels and its composites of ni doped ZnO nanorods. Dig J Nanomater Bios. 2020;15(1):217–230.
Wu Y, Zhao X, Shang Y, Chang S, Dai L, Cao A. Application-driven carbon nanotube functional materials. ACS nano. 2021;15(5):7946–7974. https://doi.org/10.1021/acsnano.0c10662
Taha MR, Ying T. Effects of Carbon Nanotube on Kaolinite: Basic Geotechnical Behavior. Anchorage, Alaska, USA. 2010.
Chappell MA. Solid-Phase characteristics of engineered nanoparticles. In: Linkov I, Steevens J, eds., Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer; 2009. https://doi.org/10.1007/978-1-4020-9491-0_8
Garboczi EJ. Concrete nanoscience and nanotechnology: definitions and applications. In: Bittnar Z, Bartos PJM, Němeček J, Šmilauer V, Zeman J, eds., Nanotechnology in Construction 3. Springer, Berlin, Heidelberg; 2009. https://doi.org/10.1007/978-3-642-00980-8_9
Akiladevi D, Basak S. Carbon nanotubes (CNTs) production, characterization and its applications. Int J Adv Pharm Sci. 2010;1:187–195.
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chemical Toxicol. 2022;45(1):435–450. https://doi.org/10.1080 /01480545.2019.1709492
Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Molecul Neurosci. 2000;14(3):175–182. https://doi.org/10.1385 /JMN:14:3:175
Saito N, Usui Y, Aoki K, et al. Carbon nanotubes: biomaterial applications. Chem Soc Rev. 2009;38(7):1897–1903. https://doi.org/10.1039/B804822N
Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv Mat. 2003;15(20):1765–1768. https://doi.org/10.1002/adma.200301646
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for clinical applications of nanocarbons focusing on carbon nanotubes. Adv Sci. 2022;9(24):e2201214. https://doi.org/10.1002/ advs.202201214
Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today. 2015;20(6):750–759. https://doi.org/10.1016/j.drudis. 2015.01.006
Merum S, Veluru JB, Seeram R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Mater Sci Eng. 2017;223:43–63. https://doi.org/10.1016/j.mseb.2017.06.002
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015. https://doi.org/10.1016/j.addr.2013.08.005
Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today. 2010;15(11):428–435. https://doi.org/10.1016/j.drudis.2010.04.005
Mahmood A, Saqib M, Ali M, Abdullah MI, Khalid B. Theoretical investigation for the designing of novel antioxidants. Canad J Chem. 2013;91(2):126–130. https://doi.org/10.1139/cjc-2012-0356
Pai P NK, Jamade S, Shah R, Ekshinge V, Jadhav N. Pharmaceutical applications of carbon tubes and nanohorns. Current Pharma Res. J. 2006;1:11–15.
Sun Y, Wang X, Huang Y, Pan Z, Wang L. Derivatization following hollow‐fiber microextraction with tetramethylammonium acetate as a dual‐function reagent for the determination of benzoic acid and sorbic acid by GC. J Separa Sci. 2013;36(14):2268–2276. https://doi.org/10. 1002/jssc.201300239
Han F, He Y-Z, Li L, Fu G-N, Xie H-Y, Gan W-E. Determination of benzoic acid and sorbic acid in food products using electrokinetic flow analysis–ion pair solid phase extraction–capillary zone electrophoresis. Analytica Chimica Acta. 2008;618(1):79–85. https://doi.org/10.1016/j.aca.2008.04.041
Hui S, Das NC. Surface modified carbon nanotubes in food packaging. In: Aslam J, Hussain CM, Aslam R. Surface Modified Carbon Nanotubes Volume 2: Industrial Applications. ACS Publications; 2022:199–233. https://doi.org/10.1021/bk-2022-1425.ch009
Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature. 1998;394(6688):52–55. https://doi.org/10.1038/27873
Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere. 2022;302:e134826. https://doi.org/10.1016/j. chemosphere.2022.134826
Hussain S, Nazir K, Ata-ur-Rehman, Abbas SM. Nitrogen dioxide sensing technologies. In: Toxic Gas Sensors and Biosensors. Materials Research Foundations;2021:1–38. https://doi.org/10. 21741/9781644901175-1
Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000;287(5459):e1801.https://doi.org/10.1126/science.287.5459.1801
Ivers-Tiffée E, Härdtl K, Menesklou W, Riegel J. Principles of solid state oxygen sensors for lean combustion gas control. Electroch Acta. 2001;47(5):807–814. https://doi.org/10.1016/S0013-4686(01)00761-7
Ong KG. Design and application of planar inductor-capacitor resonant circuit remote query sensors [doctoral thesis]. University of Kentucky; 2000.
Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon nanotube chemical sensors. Chem Rev. 2018;119(1):599–663. https://doi.org/10.1021/acs.chemrev.8b00340
Matos MA, Pinho ST, Tagarielli VL. Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites. Carbon. 2019;146:265–275. https://doi.org/10.1016 /j.carbon.2019.02.001
Camilli L, Passacantando M. Advances on sensors based on carbon nanotubes. Chemosensors. 2018;6(4):e62. https://doi.org/10.3390 /chemosensors6040062
Sajid M, Asif M, Baig N, Kabeer M, Ihsanullah I, Mohammad AW. Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. J Water Process Eng. 2022;47:e102815. https://doi.org/10.1016/j .jwpe.2022.102815
Chung JH, Hasyimah N, Hussein N. Application of carbon nanotubes (CNTs) for remediation of emerging pollutants-a review. Trop Aqu Soil Pollut 2022;2(1):13–26. https://doi.org/10.53623/tasp.v2i1.27
Kaushik1 BK, Majumder MK. Carbon Nanotube Based VLSI Interconnects. Analysis and Design. Springer; 2015.
Car ADV-CCB. Electronic structure at carbon nanotube tips. Applied Physics A. 1999;68(3):283–286. https://doi.org/10.1007/ s003390050889
Sharma A, Kim HS, Kim D-W, Ahn S. A carbon nanotube field-emission X-ray tube with a stationary anode target. Microelec Eng. 2016;152:35–40. https://doi.org/10.1016/j.mee.2015.12.021
Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1(1):107–131. https://doi.org/10.1016/j. nanoen.2011.11.001
Matsumoto T, Komatsu T, Arai K, et al. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chemical Commun. 2004(7):840–841. https://doi.org/10.1039/B400607K
Banhart F, Grobert N, Terrones M, Charlier JC, Ajayan PM. Metal atoms in carbon nanotubes and related nanoparticles. Int J Modern Phy B. 2001;15(31):4037–4069. https://doi.org/10.1142/ S0217979201007944
Veziro TN, Barbir F. Hydrogen: the wonder fuel. Int J Hydrogen Energy. 1992;17(6):391–404. https://doi.org/10.1016/0360-3199(92) 90183-W
Copyright (c) 2023 Dr Shabbir Hussain
This work is licensed under a Creative Commons Attribution 4.0 International License.