Fluidic Simulation and Optimization of Microchannels for Retinal Vein Occlusion (RVO) by Using Fuzzy Technique
Abstract
Abstract Views: 0A microelectromechanical system (MEMS) is a diminutive machine having electronic and mechanical components with a size ranging from 20 µm-1 mm. In this present-day world, MEMS fabrication techniques have remodeled the conventional approaches towards system fabrication. Microfluidics is an eminent domain of MEMS in which small volumes of fluids are disciplined in micro-channels having dimensions in the submillimeter to achieve the desired outputs. Microfluidics have revolutionized the realm of compact system fabrication through preeminent inventions like lab-on-a-chip technology. Microchannels of various architectures are fabricated to employ microfluidic systems depending upon the required function of the device. In ophthalmology, Retinal Vein Occlusion (RVO) is an ailment in which small veins that take away blood from the human eye's retina are blocked or fissured, causing vision loss. Therefore, in this study, four micro-channels with different architectures, namely, sinusoidal, U-shaped, spiral, and curvilinear, were simulated by using the fuzzy technique to investigate the optimization of fluids for the implantation process to fix the RVO elixir. The two most critical parameters in retinal vein flow rate and velocity were taken at the output for optimization. Hence, fuzzy fluidic simulation revealed that curvilinear micro-channels were the best fit for biomedical implantation to treat RVO malady.
Downloads
References
Gad-el-Hak M. MEMS: Introduction and Fundamentals. CRC press; 2005.
van Heeren H. Standards for connecting microfluidic devices? Lab Chip. 2012;12(6):1022–1025.
Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing—process and its applications. Adv Mater. 2010;22(6):673–685. https://doi.org/10.1002/adma.200901141
Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: Status and future. Anal Chem. 2011;84(2):487–515. https://doi.org/10.1021/ac2030199
Abdelgawad M, Wheeler AR. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid. 2008;4(4):349–355. https://doi.org/10.1007/s10404-007-0190-3
Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density gallium nitride electronics. IEEE Transac Comp Pack Manufac Technol. 2015;5(6):737–744. https://doi.org/10.1109/TCPMT.2015.2433132
Liu C, Hu G, Jiang X, Sun J. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab Chip. 2015;15(4):1168–1177. https://doi.org/10.1039/C4LC01216J
Tonomura O, Kano M, Hasebe S. Shape optimization of microchannels using CFD and adjoint method. In: Pierucci S, Ferraris GB, ed. Computer Aided Chemical Engineering. Vol 28. Elsevier; 2010:37–42. https://doi.org/10.1016/S1570-7946(10)28007-0
Liang L, Xuan X. Continuous sheath-free magnetic separation of particles in a U-shaped microchannel. Biomicrofluid, 2012;6(4):e044106. https://doi.org/10.1063/1.4765335
Fujiwara H, Ishikawa T, Lima R, et al. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J Biomech. 2009;42(7):838–843. https://doi.org/10.1016/j.jbiomech.2009.01.026
Bruckmann A, Klefenz F, Wunsche A. A neural net for 2D-slope and sinusoidal shape detection. Int J Comput. 2014;3(1):21–26.
Toghraie D, Abdollah MM, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim 2018;131(2):1757–1766. https://doi.org/10.1007/s10973-017-6624-6
Ghani IA, Kamaruzaman N, Sidik NA. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Trans. 2017;108:1969–1981. https://doi.org/10.1016/ j.ijheatmasstransfer.2017.01.046
Kuntaegowdanahalli SS, Bhagat AA, Kumar G, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip. 2009;9(20):2973–2980. https://doi.org/10.1039/B908271A
MacInnes JM, Ortiz-Osorio J, Jordan PJ, Priestman GH, Allen RW. Experimental demonstration of rotating spiral microchannel distillation. Chem Eng J. 2010;159(1-3):159–169. https://doi.org/10.1016/ j.cej.2010.02.030
Peng XY, Li PC, Yu HZ, Ash MP, Chou WL. Spiral microchannels on a CD for DNA hybridizations. Sens Actuator B Chem. 2007;128(1):64–69. https://doi.org/10.1016/j.snb.2007.05.038
Zhang TT, Jia L, Zhang J, Jaluria Y. Numerical simulation of fluid flow and heat transfer in U-shaped microchannels. Numer Heat Trans. 2014;66(3):217–228. https://doi.org/10.1080/10407782.2013.873288
Vishnubhatla KC, Bellini N, Ramponi R, Cerullo G, Osellame R. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Optic Exp. 2009;17(10):8685–8695. https://doi.org/10.1364/OE.17.008685
Kockmann N, Engler M, Haller D, Woias P. Fluid dynamics and transfer processes in bended microchannels. Heat Trans Eng. 2005;26(3):71–78. https://doi.org/10.1080/01457630590907310
Afzal MJ, Tayyaba S, Ashraf MW, Hossain MK, Afzulpurkar N. Fluidic simulation and analysis of spiral, U-shape and curvilinear nano channels for biomedical application. 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO); August 7–11, 2011, Shanghai, China. https://doi.org/ 10.1109/3M-NANO.2017.8286277
Özbey A, Karimzadehkhouei M, Akgönül S, Gozuacik D, Koşar A. Inertial focusing of microparticles in curvilinear microchannels. Sci Rep. 2016;6:e38809. https://doi.org/10.1038/srep38809
Lee MG, Choi S, Park JK. Inertial separation in a contraction–expansion array microchannel. J Chromat A. 2011;1218(27):4138–4143. https://doi.org/10.1016/j.chroma.2010.11.081
Wewala WA, Kasi JK, Kasi AK, Afzulpurkar N. Design, simulation and comparison of ascending and descending curvilinear microchannels for cancer cell separation from blood. Biomed Eng. 2013;25(3):e1350037. https://doi.org/10.4015/S1016237213500373
Korin N, Bransky A, Dinnar U, Levenberg S. A parametric study of human fibroblasts culture in a microchannel bioreactor. Lab Chip. 2007;7(5):611–617. https://doi.org/10.1039/B702392H
Ko YG, Co CC, Ho CC. Directing cell migration in continuous microchannels by topographical amplification of natural directional persistence. Biomaterials. 2013;34(2):353–360. https://doi.org/10. 1016/j.biomaterials.2012.09.071
Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. 2011;3(1):e012001. https://doi.org/10.1088/1758-5082/3/ 1/012001
Kim J, Antaki JF, Massoudi M. Computational study of blood flow in microchannels. J Comput Appl Math. 2016;292:174–187. https://doi.org/10.1016/j.cam.2015.06.017
Yaginuma T, Oliveira MS, Lima R, Ishikawa T, Yamaguchi T. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics. 2013;7(5):e054110. https://doi.org/10.1063/1.4820414
Parker KJ. A microchannel flow model for soft tissue elasticity. Phys Med Biol. 2014;59(15):e4443. https://doi.org/10.1088/0031-9155/59/15/4443
Atchison DA, Smith G. Optics of the human eye. Encyclo Mod Opt. 2000;5:43–63.
Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117(2):313–319. https://doi.org/10.1016/j.ophtha.2009.07.017
Wong TY, Klein R. The Epidemiology of Eye Diseases in Diabetes. John Wiley & Sons, Ltd; 2008.
Lee JY, Yoon YH, Kim HK, et al. Baseline characteristics and risk factors of retinal vein occlusion: A study by the Korean RVO Study Group. J Korean Med Sci. 2013;28(1):136–144. https://doi.org/10.3346/jkms.2013.28.1.136
Chhablani J, Stewart M, Paulose R, Gallego-Pinazo R, Dolz-Marco R. Clinical characteristics and treatment outcomes of recurrent central retinal vein occlusions. In: Seminars in Ophthalmology. 2nd ed., Taylor & Francis; 2018:191–197.
MacDonald D. The ABC s of RVO: A review of retinal venous occlusion. Clinic Experiment Optoom. 2014;97(4):311–323. https://doi.org/10.1111/cxo.12120
Schachat AP, Zarbin MA. Anti-vascular endothelial growth factor drugs to reduce diabetic retinopathy progression. Ophthalmol Retina. 2018;2(10):985–987. https://doi.org/10.1016/j.oret.2018.08.004
Pinho T, Neves M, Alves C. Multidisciplinary management including periodontics, orthodontics, implants, and prosthetics for an adult. Am J Orthod Dento Ortho. 2012;142(2):235–245. https://doi.org/10.1016/j.ajodo.2010.10.026
Arsiwala A, Desai P, Patravale V. Recent advances in micro/nanoscale biomedical implants. J Controll Rel. 2014;189:25–45. https://doi.org/10.1016/j.jconrel.2014.06.021
Afzal MJ, Tayyaba S, Ashraf MW, Hossain MK, Uddin MJ, Afzulpurkar N. Simulation, fabrication and analysis of silver based ascending sinusoidal microchannel (ASMC) for implant of varicose veins. Micromachines. 2017;8(9):e278. https://doi.org/10.3390/mi8090278
Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. The AAPS J. 2011;13(3):473–481. https://doi.org/10.1208/s12248-011-9288-3
Husny J, Cooper-White JJ. The effect of elasticity on drop creation in T-shaped microchannels. J Non-NewFluid Mech. 2006;137(1-3):121–136. https://doi.org/10.1016/j.jnnfm.2006.03.007
Abdel-Hamid W, Abdelazim T, El-Sheimy N, Lachapelle G. Improvement of MEMS-IMU/GPS performance using fuzzy modeling. GPS Solu. 2006;10(1):1–11. https://doi.org/10.1007/s10291-005-0146-6
Tayyaba S, Afzal MJ, Sarwar G, Ashraf MW, Afzulpurkar N. Simulation of flow control in straight microchannels using fuzzy logic. International Conference on Computing, Electronic and Electrical Engineering (ICE Cube); April 11–12, 2016, Quetta, Pakistan. https://doi.org/10.1109/ICECUBE.2016.7495226
Afzal MJ, Javaid F, Tayyaba S, Ashraf MW, Punyasai C, Afzulpurkar N. Study of charging the smart phone by human movements by using MATLAB fuzzy technique. 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); July 18–21, 2018, Chiang Rai, Thailand. https://doi.org/10.1109/ECTICon.2018.8619882
Afzal MJ, Javaid F, Tayyaba S, Ashraf MW, Yasin MI. Study of constricted blood vessels through ANSYS fluent. Biologia. 2020;66(2):197–201.
Afzal MJ, Javaid F, Tayyaba S, Sabah A, Ashraf MW. Fluidic simulation for blood flow in five curved Spiral Microchannel. Biologia. 2019;65(2):1–15.
Afzal MJ, Tayyaba S, Ashraf MW, Sarwar G. Simulation of fuzzy based flow controller in ascending sinusoidal microchannels. 2nd International Conference on Robotics and Artificial Intelligence (ICRAI); November 1–2, 2016; Rawalpindi, Pakistan. https://doi.org/10.1109/ICRAI.2016.7791243
Tayyaba S, Ashraf MW, Ahmad Z, Wang N, Afzal MJ, Afzulpurkar N. Fabrication and analysis of polydimethylsiloxane (PDMS) microchannels for biomedical application. Processes. 2021;9(1):e57. https://doi.org/10.3390/pr9010057
Afzal MJ, Tayyaba S, Ashraf MW, et al. A review on microchannel fabrication methods and applications in large-scale and prospective industries. Evergreen. 2022;9(3):764–808.
Copyright (c) 2023 Dr. Muhammad Javaid Afzal
This work is licensed under a Creative Commons Attribution 4.0 International License.