Fluidic Simulation and Optimization of Microchannels for Retinal Vein Occlusion (RVO) by Using Fuzzy Technique

  • Muhammad Javaid Afzal Department of Physics, Govt. Islamia Graduate College Civil Lines Lahore, Pakistan
  • Farah Javaid Department of Physics, Govt. APWA College (W) Lahore, Pakistan
  • Muhammad Ilyas Yasin Department of Firearms Acadiana Criminalistics Laboratory, New Iberia Louisiana – USA
  • Shahzadi Tayyaba Department of Information Sciences, University of Education, Township Campus, Lahore, Pakistan
  • Muhammad Waseem Ashraf Department of Electronics, Govt. College University, Lahore, Pakistan
Keywords: biomedical implants, curvilinear microchannel, fuzzy logic, microchannels, retinal vein occlusion

Abstract

Abstract Views: 0

A microelectromechanical system (MEMS) is a diminutive machine having electronic and mechanical components with a size ranging from 20 µm-1 mm. In this present-day world, MEMS fabrication techniques have remodeled the conventional approaches towards system fabrication. Microfluidics is an eminent domain of MEMS in which small volumes of fluids are disciplined in micro-channels having dimensions in the submillimeter to achieve the desired outputs. Microfluidics have revolutionized the realm of compact system fabrication through preeminent inventions like lab-on-a-chip technology.  Microchannels of various architectures are fabricated to employ microfluidic systems depending upon the required function of the device.  In ophthalmology, Retinal Vein Occlusion (RVO) is an ailment in which small veins that take away blood from the human eye's retina are blocked or fissured, causing vision loss. Therefore, in this study, four micro-channels with different architectures, namely, sinusoidal, U-shaped, spiral, and curvilinear, were simulated by using the fuzzy technique to investigate the optimization of fluids for the implantation process to fix the RVO elixir. The two most critical parameters in retinal vein flow rate and velocity were taken at the output for optimization. Hence, fuzzy fluidic simulation revealed that curvilinear micro-channels were the best fit for biomedical implantation to treat RVO malady.

Downloads

Download data is not yet available.

References

Gad-el-Hak M. MEMS: Introduction and Fundamentals. CRC press; 2005.

van Heeren H. Standards for connecting microfluidic devices? Lab Chip. 2012;12(6):1022–1025.

Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing—process and its applications. Adv Mater. 2010;22(6):673–685. https://doi.org/10.1002/adma.200901141

Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: Status and future. Anal Chem. 2011;84(2):487–515. https://doi.org/10.1021/ac2030199

Abdelgawad M, Wheeler AR. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid. 2008;4(4):349–355. https://doi.org/10.1007/s10404-007-0190-3

Won Y, Cho J, Agonafer D, Asheghi M, Goodson KE. Fundamental cooling limits for high power density gallium nitride electronics. IEEE Transac Comp Pack Manufac Technol. 2015;5(6):737–744. https://doi.org/10.1109/TCPMT.2015.2433132

Liu C, Hu G, Jiang X, Sun J. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab Chip. 2015;15(4):1168–1177. https://doi.org/10.1039/C4LC01216J

Tonomura O, Kano M, Hasebe S. Shape optimization of microchannels using CFD and adjoint method. In: Pierucci S, Ferraris GB, ed. Computer Aided Chemical Engineering. Vol 28. Elsevier; 2010:37–42. https://doi.org/10.1016/S1570-7946(10)28007-0

Liang L, Xuan X. Continuous sheath-free magnetic separation of particles in a U-shaped microchannel. Biomicrofluid, 2012;6(4):e044106. https://doi.org/10.1063/1.4765335

Fujiwara H, Ishikawa T, Lima R, et al. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J Biomech. 2009;42(7):838–843. https://doi.org/10.1016/j.jbiomech.2009.01.026

Bruckmann A, Klefenz F, Wunsche A. A neural net for 2D-slope and sinusoidal shape detection. Int J Comput. 2014;3(1):21–26.

Toghraie D, Abdollah MM, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim 2018;131(2):1757–1766. https://doi.org/10.1007/s10973-017-6624-6

Ghani IA, Kamaruzaman N, Sidik NA. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Trans. 2017;108:1969–1981. https://doi.org/10.1016/ j.ijheatmasstransfer.2017.01.046

Kuntaegowdanahalli SS, Bhagat AA, Kumar G, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip. 2009;9(20):2973–2980. https://doi.org/10.1039/B908271A

MacInnes JM, Ortiz-Osorio J, Jordan PJ, Priestman GH, Allen RW. Experimental demonstration of rotating spiral microchannel distillation. Chem Eng J. 2010;159(1-3):159–169. https://doi.org/10.1016/ j.cej.2010.02.030

Peng XY, Li PC, Yu HZ, Ash MP, Chou WL. Spiral microchannels on a CD for DNA hybridizations. Sens Actuator B Chem. 2007;128(1):64–69. https://doi.org/10.1016/j.snb.2007.05.038

Zhang TT, Jia L, Zhang J, Jaluria Y. Numerical simulation of fluid flow and heat transfer in U-shaped microchannels. Numer Heat Trans. 2014;66(3):217–228. https://doi.org/10.1080/10407782.2013.873288

Vishnubhatla KC, Bellini N, Ramponi R, Cerullo G, Osellame R. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Optic Exp. 2009;17(10):8685–8695. https://doi.org/10.1364/OE.17.008685

Kockmann N, Engler M, Haller D, Woias P. Fluid dynamics and transfer processes in bended microchannels. Heat Trans Eng. 2005;26(3):71–78. https://doi.org/10.1080/01457630590907310

Afzal MJ, Tayyaba S, Ashraf MW, Hossain MK, Afzulpurkar N. Fluidic simulation and analysis of spiral, U-shape and curvilinear nano channels for biomedical application. 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO); August 7–11, 2011, Shanghai, China. https://doi.org/ 10.1109/3M-NANO.2017.8286277

Özbey A, Karimzadehkhouei M, Akgönül S, Gozuacik D, Koşar A. Inertial focusing of microparticles in curvilinear microchannels. Sci Rep. 2016;6:e38809. https://doi.org/10.1038/srep38809

Lee MG, Choi S, Park JK. Inertial separation in a contraction–expansion array microchannel. J Chromat A. 2011;1218(27):4138–4143. https://doi.org/10.1016/j.chroma.2010.11.081

Wewala WA, Kasi JK, Kasi AK, Afzulpurkar N. Design, simulation and comparison of ascending and descending curvilinear microchannels for cancer cell separation from blood. Biomed Eng. 2013;25(3):e1350037. https://doi.org/10.4015/S1016237213500373

Korin N, Bransky A, Dinnar U, Levenberg S. A parametric study of human fibroblasts culture in a microchannel bioreactor. Lab Chip. 2007;7(5):611–617. https://doi.org/10.1039/B702392H

Ko YG, Co CC, Ho CC. Directing cell migration in continuous microchannels by topographical amplification of natural directional persistence. Biomaterials. 2013;34(2):353–360. https://doi.org/10. 1016/j.biomaterials.2012.09.071

Huang GY, Zhou LH, Zhang QC, et al. Microfluidic hydrogels for tissue engineering. 2011;3(1):e012001. https://doi.org/10.1088/1758-5082/3/ 1/012001

Kim J, Antaki JF, Massoudi M. Computational study of blood flow in microchannels. J Comput Appl Math. 2016;292:174–187. https://doi.org/10.1016/j.cam.2015.06.017

Yaginuma T, Oliveira MS, Lima R, Ishikawa T, Yamaguchi T. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics. 2013;7(5):e054110. https://doi.org/10.1063/1.4820414

Parker KJ. A microchannel flow model for soft tissue elasticity. Phys Med Biol. 2014;59(15):e4443. https://doi.org/10.1088/0031-9155/59/15/4443

Atchison DA, Smith G. Optics of the human eye. Encyclo Mod Opt. 2000;5:43–63.

Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117(2):313–319. https://doi.org/10.1016/j.ophtha.2009.07.017

Wong TY, Klein R. The Epidemiology of Eye Diseases in Diabetes. John Wiley & Sons, Ltd; 2008.

Lee JY, Yoon YH, Kim HK, et al. Baseline characteristics and risk factors of retinal vein occlusion: A study by the Korean RVO Study Group. J Korean Med Sci. 2013;28(1):136–144. https://doi.org/10.3346/jkms.2013.28.1.136

Chhablani J, Stewart M, Paulose R, Gallego-Pinazo R, Dolz-Marco R. Clinical characteristics and treatment outcomes of recurrent central retinal vein occlusions. In: Seminars in Ophthalmology. 2nd ed., Taylor & Francis; 2018:191–197.

MacDonald D. The ABC s of RVO: A review of retinal venous occlusion. Clinic Experiment Optoom. 2014;97(4):311–323. https://doi.org/10.1111/cxo.12120

Schachat AP, Zarbin MA. Anti-vascular endothelial growth factor drugs to reduce diabetic retinopathy progression. Ophthalmol Retina. 2018;2(10):985–987. https://doi.org/10.1016/j.oret.2018.08.004

Pinho T, Neves M, Alves C. Multidisciplinary management including periodontics, orthodontics, implants, and prosthetics for an adult. Am J Orthod Dento Ortho. 2012;142(2):235–245. https://doi.org/10.1016/j.ajodo.2010.10.026

Arsiwala A, Desai P, Patravale V. Recent advances in micro/nanoscale biomedical implants. J Controll Rel. 2014;189:25–45. https://doi.org/10.1016/j.jconrel.2014.06.021

Afzal MJ, Tayyaba S, Ashraf MW, Hossain MK, Uddin MJ, Afzulpurkar N. Simulation, fabrication and analysis of silver based ascending sinusoidal microchannel (ASMC) for implant of varicose veins. Micromachines. 2017;8(9):e278. https://doi.org/10.3390/mi8090278

Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. The AAPS J. 2011;13(3):473–481. https://doi.org/10.1208/s12248-011-9288-3

Husny J, Cooper-White JJ. The effect of elasticity on drop creation in T-shaped microchannels. J Non-NewFluid Mech. 2006;137(1-3):121–136. https://doi.org/10.1016/j.jnnfm.2006.03.007

Abdel-Hamid W, Abdelazim T, El-Sheimy N, Lachapelle G. Improvement of MEMS-IMU/GPS performance using fuzzy modeling. GPS Solu. 2006;10(1):1–11. https://doi.org/10.1007/s10291-005-0146-6

Tayyaba S, Afzal MJ, Sarwar G, Ashraf MW, Afzulpurkar N. Simulation of flow control in straight microchannels using fuzzy logic. International Conference on Computing, Electronic and Electrical Engineering (ICE Cube); April 11–12, 2016, Quetta, Pakistan. https://doi.org/10.1109/ICECUBE.2016.7495226

Afzal MJ, Javaid F, Tayyaba S, Ashraf MW, Punyasai C, Afzulpurkar N. Study of charging the smart phone by human movements by using MATLAB fuzzy technique. 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); July 18–21, 2018, Chiang Rai, Thailand. https://doi.org/10.1109/ECTICon.2018.8619882

Afzal MJ, Javaid F, Tayyaba S, Ashraf MW, Yasin MI. Study of constricted blood vessels through ANSYS fluent. Biologia. 2020;66(2):197–201.

Afzal MJ, Javaid F, Tayyaba S, Sabah A, Ashraf MW. Fluidic simulation for blood flow in five curved Spiral Microchannel. Biologia. 2019;65(2):1–15.

Afzal MJ, Tayyaba S, Ashraf MW, Sarwar G. Simulation of fuzzy based flow controller in ascending sinusoidal microchannels. 2nd International Conference on Robotics and Artificial Intelligence (ICRAI); November 1–2, 2016; Rawalpindi, Pakistan. https://doi.org/10.1109/ICRAI.2016.7791243

Tayyaba S, Ashraf MW, Ahmad Z, Wang N, Afzal MJ, Afzulpurkar N. Fabrication and analysis of polydimethylsiloxane (PDMS) microchannels for biomedical application. Processes. 2021;9(1):e57. https://doi.org/10.3390/pr9010057

Afzal MJ, Tayyaba S, Ashraf MW, et al. A review on microchannel fabrication methods and applications in large-scale and prospective industries. Evergreen. 2022;9(3):764–808.

Published
2023-08-25
How to Cite
1.
Afzal MJ, Javaid F, Ilyas Yasin M, Tayyaba S, Waseem Ashraf M. Fluidic Simulation and Optimization of Microchannels for Retinal Vein Occlusion (RVO) by Using Fuzzy Technique. Sci Inquiry Rev. [Internet]. 2023Aug.25 [cited 2024Jun.26];7(3):48-7. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/4295
Section
Orignal Article