Novel/Old Generalized Multiplicative Zagreb Indices of Some Special Graphs

  • Usman Ali Department of Mathematics, Lahore Garrison University, Pakistan
Keywords: connection number, degree, generalized multiplicative Zagreb indices, special graphs

Abstract

Abstract Views: 0

Topological descriptor is a fixed real number directly attached with the molecular graph to predict the physical and chemical properties of the chemical compound. Gutman and Trinajsti  elaborated the first Zagreb index (ZI) which was based on degree in 1972. Ali and Trinajsti defined a connection number (CN) based topological descriptor in 2018. They found that the CN-based Zagreb indices have a greater chemical capability for thirteen physicochemical properties of octane isomers.For  the generalized ZI and the generalized first Zagreb connection index (ZCI) of a graph  is    and , where  and  are the degree and CN of the vertex in . In this paper, the generalized first, second, third, and fourth multiplicative ZCIs are defined. Some exact solutions are also developed for the generalized multiplicative ZI and the above-mentioned generalized multiplicative versions of some special graphs, which are flower, sunflower, wheel, helm, and gear. The results  and  are the generalized forms of the results  and  where,  respectively.

d(m)^{\beta}+d(m)^{\alpha}d(l)^{\beta}]$ and $C_{\alpha,\beta}(Q)=\sum_{lm\in E(Q)}[\tau(l)^{\alpha}\tau(m)^{\beta}+\tau(m)^{\alpha}\tau(l)^{\beta}]$, where $d_{Q}(m)$ and $\tau_{Q}(m)$ are the degree and CN of the vertex $m$ in $Q$. In this paper, we define generalized multiplicative ZCIs such as generalized first multiplicative ZCI, generalized second multiplicative ZCI, generalized third multiplicative ZCI and generalized fourth multiplicative ZCI. We also compute some exact formulae for the generalized multiplicative ZI and above-mentioned generalized multiplicative versions of some special graphs which are wheel, gear, helm, flower and sunflower. The obtained results $(MC_{\alpha,\beta}^{2},
MC_{\alpha,\beta}^{3}$ and $MC_{\alpha,\beta}^{4})$ are the generalized extensions of the results $(MZC_{1}^{*}, MZC_{2}^{*}$ and $MZC_{3}^{*})$ of Javaid et al. [Novel connection based ZIs of several wheel-related graphs, $2(2020), 31-58]$ who worked only for $\alpha, \beta=1,$ respectively.

Downloads

Download data is not yet available.

References

Kier LB. Molecular Connectivity in Chemistry and Drug Research. Boston, USA: Elsevier; 2012.

Gutman I, Polansky OE. Mathematical Concepts in Organic Chemistry. Berlin, Heidelberg: Springer-Verlag; 1986.

Gonzalez-Diaz H, Vilar S, Uriarte E. Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem. 2007;7(10):1015–1029. https://doi.org/10.2174/156802607780906771

Diudea MV. Computer Aided Chemical Engineering. Nova Science Publishers; 2001.

Varmuza K, Dehmer M, Bonchev D. Statistical modeling of molecular descriptors in QSAR/QSPR. Weinheim, Germany. Wiley-Online Library; 2012.

Alfuraidan MR, Imran M, Jamil MK, Vetrik T. General multiplicative Zagreb indices of graphs with bridges. IEEE Acc. 2020;8:118725–118731. https://doi.org/10.1109/ ACCESS.2020.3005040

Todeschini R, Ballabio D, Consonni V. Novel molecular descriptors based on functions of new vertex degrees. Math Chem Monogr. 2010;73–100.

Eliasi M, Iranmanesh A, Gutman I. Multiplicative versions of first Zagreb index. MATCH Commun Math Comput Chem. 2012;68:217–230.

Gutman I. Multiplicative Zagreb indices of trees. Bull Soc Math Banja Luka. 2011;18:17–23.

Xu K, Hua H. A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 2012;68:241–256.

Xu K, Das KC. Trees, unicyclic and bicyclic graphs extremal with respect to multiplicative sum Zagreb index. MATCH Commun. Math. Comput. Chem. 2012;68:257–272.

Wang S, Wei B. Multiplicative Zagreb indices of k-trees. Discrete App Math. 2015;180:168–175. https://doi.org/ 10.1016/j.dam.2014.08.017

Borovic´anin B, Furtula B. On extremal Zagreb indices of trees with given domination number. App Math Comp. 2016;279:208–218. https://doi.org/10.1016/j.amc.2016.01.017

Vetrik T, Balachandran S. General multiplicative Zagreb indices of trees. Discrete App Math. 2018;247:341–351. https://doi.org/ 10.1016/j.dam.2018.03.084

Ahsan ZH, Arshad SH. Computing multiplicative topological indices of some chemical nenotubes and networks. Open J Discrete App Math. 2019;2:7–18.

Zhang X, Awais HM, Javaid M, Siddiqui MK. Multiplicative Zagreb indices of molecular graphs. J Chem. 2019;2019:1–19. https://doi.org/10.1155/2019/5294198

Todescini R, Consonni V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 2010;64:359–372.

Das KC, Yurttas A, Togan M, Cevik AS, Cangul IN. The multiplicative Zagreb indices of graph operations. J Inequal App. 2013;2013:1–14.

Azari M, Iranmanesh A. Generalized Zagreb index of graphs. Studia Univ. Babes Bolyai Chemia. 2011;56(3):59–71.

Azari M. Generalized Zagreb index of product graphs. Trans Comb. 2019;8(4):35–48. https://doi.org/10.22108/toc. 2019.116001.1625

Farahani MR, Kanna MRR. Generalized Zagreb index of V-phenylenic nanotubes and nanotori. J Chem Pharm Res. 2015;7(11):241–245.

Sarkar P, De N, Pal A. The generalized Zagreb index of some carbon structures. Acta Chemica Iasi. 2018;26(1):91–104. https://doi.org/10.2478/achi-2018-0007

Sarkar P, De N, Cangul IN, Pal A. Generalized Zagreb index of some dendrimer structures. Uni J Math App. 2018;1(3):160–165. https://doi.org/10.32323/ujma.425103

Sarkar P, De N, Cangul IN, Pal A. The (a,b)-Zagreb index of some derived networks. J Taibah Uni Sci. 2019;13(1):79–86. https://doi.org/10.1080/16583655.2018.1535881

Mirajkar KG, Pooja B, Farahani MR. The Generalized Zagreb index of capra operation on cycle. Int J Sci Res Res Paper Math Stat Sci. 2019;6(1):251–254. https://doi.org/10.26438/ ijsrmss/v6i1.251254

Wang XL, Liu JB, Jahanbani A, Siddiqui MK, Rad NJ, Hasni R. On generalized topological indices of silicon-carbon. J Math. 2020;2020:1–21. https://doi.org/10.1155/2020/2128594

Javaid M, Siddique MK, Ali U. Novel connection based Zagreb indices of several wheel-related graphs. Comp J Combin Math. 2020;2:31–58.

Nikoli´c S, Kovac˘evi´c G, Milicˇevi´c A, Trinajsti´c N. The Zagreb indices 30 years after. Croat Chem Acta. 2003;76(2):113–124.

Matamala AR, Estrada E. Generalised topological indices: optimisation methodology and physico-chemical interpretation. Chem Phys Lett. 2005;410(4-6):343–347. https://doi.org/ 10.1016/j.cplett.2005.05.096

Gutman I, Trinajsti´c N. Graph theory and molecular orbitals. III. total π-electron energy of alternant hydrocarbons. Chem Phys Lett. 1972;17:535–538. https://doi.org/10.1016/0009-2614(72)85099-1

Tang JH, Ali U, Javaid M, Shabbir K. Zagreb connection indices of subdivision and semi-total point operations on graphs. J Chem. 2019;2019:1–14. https://doi.org/10.1155/2019/9846913

Ali A, Trinajsti´c N. A novel/old modification of the First Zagreb index. Mol Inf. 2018;37(6-7):1–7. https://doi.org/10. 1002/minf.201800008

Ali U, Javaid M, Kashif A. Modified Zagreb connection indices of the T-Sum graphs. Main Group Met Chem. 2020;43(1):43–55. https://doi.org/10.1515/mgmc-2020-0005

Asif M, Kizielewicz B, Rehman AU, Hussain M, Salabun W. Study of θϕ networks via Zagreb connection indices. Symmetry. 2021;13(11):e1991. https://doi.org/10.3390/ sym13111991

Ye A, Qureshi MI, Fahad A, Aslam A, Jamil MK, Zafar A. Zagreb connection number index of nanotubes and regular hexagonal lattice. Open Chem. 2019;17(1):75–80. https://doi.org/10.1515/chem-2019-0007

Wang W, Nisar A, Fahad A, Qureshi MI, Alameri A. Modified Zagreb connection indices for Benes network and related classes. J Math. 2022;2022:1–8. https://doi.org/10.1155/2022/8547332

Hussain M, Rehman AU, Shekhovtsov A, Asif M, Sa-labun W. Study of transformed θϕ networks via Zagreb connection indices. Information. 2022;13(4):e179. https://doi.org/10.3390/info13040179

Gutman I, Shao Z, Li Z, Wang S, We P. Leap Zagreb indices of trees and unicyclic graphs. Commun Combin Optim. 2018;3(2):179–194. https://doi.org/10.22049/cco.2018.26285.1092

Liu JB, Raza Z, Javaid M. Zagreb connection numbers for cellular neural networks. Discrete Dyn Nat Society. 2020;2020:1–8. https://doi.org/10.1155/2020/8038304

Ali U, Javaid M, Alanazi AM. Computing analysis of connection-based indices and coindices for product of molecular networks. Symmetry. 2020;12(8):e1320. https://doi.org/10. 3390/sym12081320

Ali U. Computing novel multiplicative ZCIs of metal-organic networks (MONs). Sci Inquiry Rev. 2021;5(1):46–71. https://doi.org/10.32350/sir/51.03

Ali U, Javaid M, Bonyah E. The generalized Zagreb connection indices of some wheel related graphs. Comp J Combin Math. 2021;4:1–15.

Javaid M, Sattar A. On topological indices of zinc-based metal organic frameworks. Main Group Met Chem. 2022;45(1):74–85. https://doi.org/10.1515/mgmc-2022-0010

Basavanagoud B, Jakkannavar P. Computing leap Zagreb indices of generalized xyz-pointline transformation graphs Txyz(G) when Z xyz T G when z =+. J Comp Math Sci. 2018;9(10):1360–1383.

Maji D, Ghorai G. A novel graph invariant: the third leap Zagreb index under several graph operations. Discrete Math Algor App. 2019;11(5).e1950054. https://doi.org/10.1142/S179383091950054X

Naji AM, Davvaz B, Mahde SS, Soner ND. A study on some properties of leap graphs. Commun Combin Optim. 2020;5(1):9–17. https://doi.org/10.22049/cco.2019.26430.1108

Haoer RS, Mohammed MA, Selvarasan T, Chidambaram N, Devadoss N. Multiplicative leap zagreb indices of T-thorny graphs. Euras Chem Commun. 2020;2(8):841–846. https://doi.org/10.22034/ecc.2020.107875

Harary F. Graph Theory. California, London: Addison-Wesley Publishing Company; 1969.

Published
2024-03-15
How to Cite
1.
Ali U. Novel/Old Generalized Multiplicative Zagreb Indices of Some Special Graphs. Sci Inquiry Rev. [Internet]. 2024Mar.15 [cited 2024Nov.24];8(1):35-0. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/4599
Section
Orignal Article