Impact of Basic Bath on Optical and Electrical Characteristics of Zinc Sulfide (ZnS) Thin Films

  • Muhammad Tahir University of Management and Technology, Lahore, Pakistan
  • Zaheer Hussain Shah University of Management and Technology, Lahore, Pakistan
  • Muhammad Imran University of Education, Lahore, Pakistan
  • Bilal Ramzan University of Management and Technology, Lahore, Pakistan
  • Saira Riaz Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
  • Shahzad Naseem Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
Keywords: chemical bath deposition, direct bandgap, high transmission, optoelectronics

Abstract

Abstract Views: 0

Zinc Sulfide (ZnS) thin films have attracted the research community because of their recognition in optoelectronic devices. An electroless, application-oriented, CBD (chemical bath deposition) method is typically applied for the deposition of ZnS thin films deposited on a glass substrate with pH 8. Deposition temperature is varied as 25℃, 50℃, 75℃, 100℃, and 125℃. In this study, ZnS thin films and X-ray diffraction (XRD) Variable Angle Spectroscopic Ellipsometry was used. XRD analysis confirmed the hexagonal structure of deposited ZnS thin films at all temperatures. Ellipsometric results showed high transmission (∼ 65%) in the visible region for thin films prepared with 50℃ deposition temperature and high refractive index at wavelength  (λ = 550nm) ∼2.04. Variation in the direct band gap (Eg), 3.86–3.99 eV, was studied for synthesized thin films of ZnS. Improvement in optimizing the optical properties of ZnS thin films indicated an effective optoelectronic application.

Downloads

Download data is not yet available.

References

Li P, Chen S, Dai H, et al. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale. 2021;13(3):1529–1565. https://doi.org/10.1039/D0NR07539F

Shen G, Chen D. One-dimensional nanostructures and devices of II–V group semiconductors. Nanoscale Res Lett. 2009;4(8):779–788. https://doi.org/10.1007/s11671-009-9338-2

Chopra K. Thin Film Device Applications. Springer Science & Business Media; 2012.

Strukov DB, Kohlstedt H. Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bull. 2012;37(2):108–114. https://doi.org/10.1557/mrs.2012.2

Abel S, Tesfaye JL, Kiran R, et al. Studying the effect of metallic precursor concentration on the structural, optical, and morphological properties of zinc sulfide thin films in photovoltaic cell applications. Adv Mater Sci Eng. 2021;2021:1–6. https://doi.org/10.1155/2021/7443664

Bashar MS, Matin R, Sultana M, et al. Effect of rapid thermal annealing on structural and optical properties of ZnS thin films fabricated by RF magnetron sputtering technique. J Theor Appl Phys. 2020;14:53–63. https://doi.org/10.1007/s40094-019-00361-5

Barman B, Bangera KV, Shivakumar GK. Preparation of thermally deposited Cux(ZnS)1-x thin films for opto-electronic devices. J Alloys Compd. 2019;772:532–536. https://doi.org/10.1016/j.jallcom.2018.09.192

Goktas A, Tumbul A, Aba Z, Kilic A, Aslan F. Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Opt Mater. 2020;107:e110073. https://doi.org/10.1016/j.optmat.2020.110073

Göde F, Gümüş C, Zor M. Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method. J Cryst Growth. 2007;299(1):136–141. https://doi.org/10.1016/j.jcrysgro.2006.10.266

Arenas OL, Nair MTS, Nair PK. Chemical bath deposition of ZnS thin films and modification by air annealing. Semicond Sci Technol. 1997;12(10):e1323. https://doi.org/10.1088/0268-1242/12/10/022

Shah ZH, Ahmad I, Tahir QA, Khawaja EE. On the determination of refractive index and thickness of thin dielectric films from measurement of transmittance. Surf Rev Lett. 2012;19(06):e1250059. https://doi.org/10.1142/S0218625X1250059X

Zeng X, Pramana SS, Batabyal SK, et al. Low-temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis. Phys Chem Chem Phys. 2013;15(18):6763–6768. https://doi.org/10.1039/C3CP43470B

Ghasemi H, Mozaffari MH, Moradian R. Effects of deposition time on structural and optical properties of ZnS and ZnS/Au thin films grown by thermal evaporation. Phy B: Condens Matter. 2022;627:e413616. https://doi.org/10.1016/j.physb.2021.413616

Priya K, Ashith VK, Rao GK, Sanjeev G. A comparative study of structural, optical, and electrical properties of ZnS thin films obtained by thermal evaporation and SILAR techniques. Ceram Int. 2017;43(13):10487–10493. https://doi.org/10.1016/j.ceramint.2017.05.094

Pathak TK, Kumar V, Purohit LP, Swart HC, Kroon RE. Substrate-dependent structural, optical, and electrical properties of ZnS thin films grown by RF sputtering. Physica E: Low-dimen Sys Nanost. 2016;84:530–536. https://doi.org/10.1016/j.physe.2016.06.020

Li X, Zhu X, Jin K. Study on structural and optical properties of Mn-doped ZnO thin films by sol-gel method. Opt Mater. 2020;100:e109657. https://doi.org/10.1016/j.optmat.2020.109657

Arandhara G, Bora J, Saikia PK. Effect of pH on the crystallite size, elastic properties, and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Mater Chem Phys. 2020;241:e122277. https://doi.org/10.1016/j.matchemphys.2019.122277

Pawar SM, Pawar BS, Kim JH, Joo OS, Lokhande CD. The recent status of the chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys. 2011;11(2):117–161. https://doi.org/10.1016/j.cap.2010.07.007

Seshan K. Handbook of Thin Film Deposition Techniques: Principles, Methods, Equipment and Applications. 2nd ed. CRC Press; 2002.

Heavens OS. Optical Properties of Thin Solid Films. Courier Corporation; 1991.

Blois MS Jr. Preparation of thin magnetic films and their properties. J Appl Phys. 1955;26(8):975–980. https://doi.org/10.1063/1.1722148

Tang ZX, Yu Z, Zhang ZL, Zhang XY, Pan QQ, Shi LE. Sonication-assisted preparation of CaO nanoparticles for antibacterial agents. Quim Nova. 2013;36(7):933–936. https://doi.org/10.1590/S0100-40422013000700002

Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J Ind Eng Chem. 2014;20(1):113–117. https://doi.org/10.1016/j.jiec.2013.04.018

Zelati A, Amirabadizadeh A, Kompany A. Preparation and characterization of barium carbonate nanoparticles. Int J Chem Eng Appl. 2011;2(4):299–303. https://doi.org/10.7763/IJCEA.2011.V2.121

Wei A, Liu J, Zhuang M, Zhao Y. Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Mater Sci Semicond Proc. 2013;16(6):1478–1484. https://doi.org/10.1016/j.mssp.2013.03.016

Priya K, Rao GK, Sanjeev G. The fabrication and characterization of thermal evaporated n-ZnS/p-Si heterojunction and ZnS-Au Schottky photodiodes. Opt Laser Technol. 2023;157:e108657. https://doi.org/10.1016/j.optlastec.2022.108657

Padmavathy V, Sankar S, Ponnuswamy V. Influence of thiourea on the synthesis and characterization of chemically deposited nano-structured zinc sulfide thin films. J Mater Sci: Mater Electron. 2018;29(9):7739–7749. https://doi.org/10.1007/s10854-018-8770-4

Wang X, Yu C, Wu J, Wei Z, Zhang Y. Solvothermal synthesis of superhydrophobic ZnS film. Asian J Chem. 2013;25(3):e1241.

Mousavi SM, Kafashan H. Physical properties of Cd-doped ZnS thin films. Superlatt Microst. 2019;126:139–149. https://doi.org/10.1016/j.spmi.2018.12.002

Cheng Y, Li W, Fan X, Liu J, Xu W, Yan C. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in an alkaline solution. Electro Acta. 2013;111:635–641. https://doi.org/10.1016/j.electacta.2013.08.034

Eryong N, Donglai L, Yunsen Z, et al. Photoluminescence and magnetic properties of Fe-doped ZnS nanoparticles synthesized by chemical co-precipitation. Appl Surf Sci. 2011;257(21):8762–8766. https://doi.org/10.1016/j.apsusc.2011.03.114

Yoo D, Choi MS, Chung C, Heo SC, Choi C. Characteristics of radio frequency-sputtered ZnS on the flexible polyethylene terephthalate (PET) substrate. J Nanosci Nanotechnol. 2013;13(12):7814–7819. https://doi.org/10.1166/jnn.2013.8120

Iwashita T, Ando S. Preparation and characterization of ZnS thin films by the chemical bath deposition method. Thin Solid Films. 2012;520(24):7076–7082. https://doi.org/10.1016/j.tsf.2012.07.129

Mane RS, Lokhande CD. Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys. 2000;65(1):1–31. https://doi.org/10.1016/S0254-0584(00)00217-0

Torabinejad M, Hong CU, McDonald F, Ford TP. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21(7):349–353. https://doi.org/10.1016/S0099-2399(06)80967-2

Tec-Yam S, Rojas J, Rejón V, Oliva AI. High-quality antireflective ZnS thin films prepared by chemical bath deposition. Mater Chem Phys. 2012;136(2-3):386–393. https://doi.org/10.1016/j.matchemphys.2012.06.063

Zhong ZY, Cho ES, Kwon SJ. Characterization of the ZnS thin film buffer layer for Cu(In,Ga)Se2 solar cells deposited by chemical bath deposition process with different solution concentrations. Mater Chem Phys. 2012;135(2-3):287–292. https://doi.org/10.1016/j.matchemphys.2012.03.090

Khatri RP, Patel AJ. Thickness-dependent studies of chemically grown transparent conducting Cu:ZnS thin films for optoelectronic applications. Opt Mater. 2021;120:e111469. https://doi.org/10.1016/j.optmat.2021.111469

Zein R, Alghoraibi I. Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method. J Nanomater. 2019;2019:e7541863. https://doi.org/10.1155/2019/7541863

Maria KH, Sultana P, Asfia MB. Chemical bath deposition of aluminum doped zinc sulfide thin films using a non-toxic complexing agent: effect of aluminum doping on optical and electrical properties. AIP Adv. 2020;10(6):e065315. https://doi.org/10.1063/5.0011191

Arif N, Fun CS. Impact on the development of ZnS nanoparticles thin film deposited by chemical bath deposition and spin coating. Int J Adv Eng Nano Technol. 2021;4(5):1–4. https://doi.org/10.35940/ijaent.D0459.024521

Qi L, Mao G, Ao J. Chemical bath-deposited ZnS thin films: preparation and characterization. Appl Surf Sci. 2008;254(18):5711–5714. https://doi.org/10.1016/j.apsusc.2008.03.059

Ubale AU, Kulkarni DK. Preparation and study of thickness-dependent electrical characteristics of zinc sulfide thin films. Bull Mater Sci. 2005;28(1):43–47. http://doi.org/10.1007/BF02711171

Rathore KS, Patidar D, Janu Y, Saxena NS, Sharma K, Sharma TP. Structural and optical characterization of chemically synthesized ZnS nanoparticles. Chalcogen Lett. 2008;5(6):105–110. http://doi.org/10.13005/ojc/290341

Goudarzi A, Langroodi SM, Arefkhani M, Langeroodi NS. Study of optical properties of ZnS and MnZnS (ZnS/MnS) nanostructure thin films; Prepared by microwave-assisted chemical bath deposition method. Mater Chem Phys. 2022;275:e125103. https://doi.org/10.1016/j.matchemphys.2021.125103

Kumari P, Sharma A, Kumawat A, et al. Strong UV emission in flakes-like ZnS nanoparticles synthesized by cost-effective sol-gel method. Mater Today: Proc. 2022;58:642–647. https://doi.org/10.1016/j.matpr.2022.01.353

Jegalakshmi E, Rameshbabu M, Razia M, et al. Structural, optical, and antimicrobial activity of Ferric doped zinc sulfide (ZnS) nanoparticles. Mater Today: Proc. 2022;49:2611–2614. https://doi.org/10.1016/j.matpr.2021.07.274

Published
2024-05-09
How to Cite
1.
Tahir M, Shah ZH, Imran M, Ramzan B, Riaz S, Naseem S. Impact of Basic Bath on Optical and Electrical Characteristics of Zinc Sulfide (ZnS) Thin Films. Sci Inquiry Rev. [Internet]. 2024May9 [cited 2025Jan.12];8(1):75-3. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/4613
Section
Orignal Article