Synthesis and Applications of Nanocomposites in Food Packaging Industry: A Review

  • Manzar Zahra Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
  • Tayyaba Jabeen Department of Zoology, Quaid-i-Azam University, Islamabad, Pakistan
  • Hammad Arshad Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Muhammad Yasin Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
  • Jigar Ali Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
Keywords: barrier properties, biodegradable, clay modification, clay-reinforced, flame retardant, nanocomposites, nanoparticles, polymeric matrix, water vapor

Abstract

Abstract Views: 0

The current review focuses on the applications of polymer nanocomposites in the packing industry. Nanocomposite fabrication may be carried out through several synthetic techniques based on the type of material required. Basically, it is the composite formation of polymeric matrix and a reinforcing nanofiller. The nanoclay used for the modification of nanocomposites acts as a reinforcement or filler. Montmorillonite (MMT) is the most frequently used clay material to obtain the desired properties of nanocomposite. Clay reinforcement enhances the food packing properties of the material because of its properties as flame retardant, tensile features, barrier properties, and biodegradability. Among bottom-up and top-down techniques, sol-gel synthesis, self-assembly, and polymerization are the most common techniques used for the synthesis of nanocomposites. Nanocomposites derived from bio-polymers make the material biodegradable which, in turn, is one of the most desirable features for their future use. Owing to improved characteristics, clay nanocomposites form a superior class of materials for food packaging, yet much finer dispersion of nanofillers and compatibility may be devised.

Downloads

Download data is not yet available.

References

Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Compos Sci Technol. 2005;65(15-16):2344–2363. https://doi.org/10.1016/j.compscitech.2005.06.016

Musil J. Hard and superhard nanocomposite coatings. Surf Coat Technol. 2000;125(1-3):322–330. https://doi.org/10.1016/S0257-8972(99)00586-1

Caseri W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol Rapid Commun. 2000;21(11):705–722. https://doi.org/10.1002/1521-3927(20000701)21:11%3C705::AID-MARC705%3E3.0.CO;2-3

García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym. 2011;84(1):203–210. https://doi.org/10.1016/j.carbpol.2010.11.024

Caseri W. Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Commun. 2008;196(5):549–572. https://doi.org/10.1080/00986440802483954

Kotsuchibashi Y, Nakagawa Y, Ebara M. Nanoparticles. In: Ebara M, eds. Biomaterials Nanoarchitectonics. Elsevier; 2016:7–23. https://doi.org/10.1016/B978-0-323-37127-8.00002-9

Avella M, Errico M, Martelli S, Martuscelli E. Preparation methodologies of polymer matrix nanocomposites. Appl Organomet Chem. 2001;15(5):435–439. https://doi.org/10.1002/aoc.168

Bruce IJ, Taylor J, Todd M, et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater. 2004;284:145–160. https://doi.org/10.1016/j.jmmm.2004.06.032

Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. J Mater Chem. 1998;8(4):1019–1027. https://doi.org/10.1039/A706614G

Porhemmat S, Ghaedi M, Rezvani AR, Azqhandi MHA, Bazrafshan AA. Nanocomposites: synthesis, characterization and its application to removal azo dyes using ultrasonic assisted method: modeling and optimization. Ultrason Sonochem. 2017;38:530–543. https://doi.org/10.1016/j.ultsonch.2017.03.053

Zhang Y, Rhee KY, Hui D, Park S-J. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos Eng. 2018;143:19–27. https://doi.org/10.1016/j.compositesb.2018.01.028

Helliwell JR. X-ray nanochemistry concepts and development. Crystall Rev. 2018;24(4): 276–280. https://doi.org/10.1080/0889311X.2018.1526173

Adnan MM, Dalod AR, Balci MH, Glaum J, Einarsrud M-A. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers. 2018;10(10):e1129. https://doi.org/10.3390/polym10101129

Souza VH, Oliveira MM, Zarbin AJ. Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices. J Power Sour. 2017;348:87–93. https://doi.org/10.1016/j.jpowsour.2017.02.064

Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci. 2019;1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

Li G, Zhang X, Zhang H, Liao C, Jiang G. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl Catal Enviro. 2019;249:147–154. https://doi.org/10.1016/j.apcatb.2019.03.007

Luan J, Wang S, Hu Z, Zhang L. Synthesis techniques, properties and applications of polymer nanocomposites. Curr Org Synthe. 2012;9(1):114–136. https://doi.org/10.1016/j.apcatb.2019.03.007

Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12:1–39. https://doi.org/10.1590/S1516-14392009000100002

Sajjadi SP. Sol-gel process and its application in Nanotechnology. J Polym Eng Technol. 2005;13:38–41.

Subbarao PS, Aparna Y, Chitturi KL. Synthesis and characterization of Ni doped SnO2 nanoparticles by sol-gel method for novel applications. Mater Today. 2020;26:1676–1680. https://doi.org/10.1016/j.matpr.2020.02.353

Chen D-H, He X-R. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull. 2001;36(7-8):1369–1377. https://doi.org/10.1016/S0025-5408(01)00620-1

Shen G, Chen Y, Lin C. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films. 2005;489(1-2):130–136. https://doi.org/10.1016/j.tsf.2005.05.016

Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM. Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci. 2005;283(2):392–396. https://doi.org/10.1016/j.jcis.2004.08.184

Li L-L, An H-W, Peng B, Zheng R, Wang H. Self-assembled nanomaterials: design principles, the nanostructural effect, and their functional mechanisms as antimicrobial or detection agents. Mater Horiz. 2019;6(9):1794–1811. https://doi.org/10.1039/C8MH01670D

Yan Y, Tang H, Li J, et al. Self-assembly synthesis of a unique stable cocoon-like hematite@ C nanoparticle and its application in lithium ion batteries. J Colloid Interface Sci. 2017;495:157–167. https://doi.org/10.1016/j.jcis.2016.12.067

England MW, Sato T, Urata C, Wang L, Hozumi A. Transparent gel composite films with multiple functionalities: Long-lasting anti-fogging, underwater superoleophobicity and anti-bacterial activity. J Coll Interface Sci. 2017;505:566–576. https://doi.org/10.1016/j.jcis.2017.06.038

Bergamasco R, Coldebella PF, Camacho FP, et al. Self-assembly modification of polyamide membrane by coating titanium dioxide nanoparticles for water treatment applications. Rev Ambient Água. 2019;14(3):e2297. https://doi.org/10.4136/ambi-agua.2297

Wang W, Wang X, Pan Y, et al. Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics. Ind Eng Chem Res. 2017;56(23):6664–6670. https://doi.org/10.1021/acs.iecr.7b01293

Chen C, Du C, Weng D, Mahmood A, Feng D, Wang J. Robust superhydrophobic polytetrafluoroethylene nanofibrous coating fabricated by self-assembly and its application for oil/water separation. ACS Appl Nano Mater. 2018;1(6):2632–2639. https://doi.org/10.1021/acsanm.8b00315

Demazeau G. Solvothermal processes: definition, key factors governing the involved chemical reactions and new trends. J Nat Sci B. 2010;65(8):999–1006. https://doi.org/10.1515/znb-2010-0805

Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomat Sci. 2018;6(6):1312–1338. https://doi.org/10.1039/C8BM00021B

Rudolph P, Kakimoto K. Crystal growth from the melt under external force fields. MRS Bullet. 2009;34(4):251–258. https://doi.org/10.1557/mrs2009.75

Moran DA, Soares JB. Starch‐based composites using mature fine tailings as fillers. Canad J Chem Eng. 2017;95(10):1901–1908. https://doi.org/10.1002/cjce.22904

Sookyung U, Nakason C, Thaijaroen W, Vennemann N. Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polym Test. 2014;33:48–56. https://doi.org/10.1016/j.polymertesting.2013.11.006

Vaezi K, Asadpour G, Sharifi SH. Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: fundamental properties and biodegradability study. Int J Biol Macromol. 2020;146:374–386. https://doi.org/10.1016/j.ijbiomac.2020.01.007

Zare Y. Recent progress on preparation and properties of nanocomposites from recycled polymers: a review. Waste Manag. 2013;33(3):598–604. https://doi.org/10.1016/j.wasman.2012.07.031

Mansor M, Fadzullah S, Masripan N, Omar G, Akop M. Comparison between functionalized graphene and carbon nanotubes: effect of morphology and surface group on mechanical, electrical, and thermal properties of nanocomposites. In: Jawaid M, Bouhfid R, Qaiss AK, eds. Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier; 2019:177–204. https://doi.org/10.1016/B978-0-12-814548-7.00009-X

Lee S, Shupe TF, Groom LH, Hse CY. Maleated polypropylene film and wood fiber handsheet laminates. Polym Compos. 2009;30(12):1864–1872. https://doi.org/10.1002/pc.20761

Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science. 2016;354(6317):1257–1260. https://doi.org/10.1126/science.aag2879

Zhao W, Li T, Li Y, et al. Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. J Mater. 2018;4(2):157–164. https://doi.org/10.1016/j.jmat.2018.01.006

Zare Y, Rhee KY, Hui D. Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos Eng. 2017;122:41–46. https://doi.org/10.1016/j.compositesb.2017.04.008

Rhim J-W, Hong S-I, Ha C-S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Technol. 2009;42(2):612–617. https://doi.org/10.1016/j.lwt.2008.02.015

Sothornvit R, Rhim J-W, Hong S-I. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng. 2009;91(3):468–473. https://doi.org/10.1016/j.jfoodeng.2008.09.026

Garcia CV, Shin GH, Kim JT. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci Technol. 2018;82:21–31. https://doi.org/10.1016/j.tifs.2018.09.021

Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062. https://doi.org/10.1021/nn5020787

Abdolmohammadi S, Yunus WMZW, Rahman MZA, Ibrahim NA. Effect of organoclay on mechanical and thermal properties of polycaprolactone/chitosan/montmorillonite nanocomposites. J Reinforc Plast Compos. 2011;30(12):1045–1054. https://doi.org/10.1177/0731684411410338

Wu Z, Huang Y, Xiao L, et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int J Biol Macromol. 2019;123:569–575. https://doi.org/10.1016/j.ijbiomac.2018.11.071

Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SK. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem. 2018;11(1):120–127. https://doi.org/10.1016/j.arabjc.2016.09.008

Ray S, Quek SY, Easteal A, Chen XD. The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng. 2006;2(4):e5. https://doi.org/10.2202/1556-3758.1149

Jorda-Beneyto M, Ortuño N, Devis A, et al. Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Food Addit Contam. 2014;31(3):354–363. https://doi.org/10.1080/19440049.2013.874045

Berekaa MM. Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol Appl Sci. 2015;4(5):345–357.

Störmer A, Bott J, Kemmer D, Franz R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends In Food Sci Technol. 2017;63:39–50. https://doi.org/10.1016/j.tifs.2017.01.011

Chawengkijwanich C, Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol. 2008;123(3):288–292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017

Cerrada ML, Serrano C, Sánchez‐Chaves M, et al. Self‐sterilized EVOH‐TiO2 nanocomposites: interface effects on biocidal properties. Adv Function Mater. 2008;18(13):1949–1960. https://doi.org/10.1002/adfm.200701068

Farhoodi M, Mohammadifar MA, Mousavi M, Sotudeh‐Gharebagh R, Emam‐Djomeh Z. Migration kinetics of ethylene glycol monomer from pet bottles into acidic food simulant: effects of nanoparticle presence and matrix morphology. J Food Proc Eng. 2017;40(2):e12383. https://doi.org/10.1111/jfpe.12383

Li X, Xing Y, Jiang Y, Ding Y, Li W. Antimicrobial activities of ZnO powder‐coated PVC film to inactivate food pathogens. Int J Food Sci Technol. 2009;44(11):2161–2168. https://doi.org/10.1111/j.1365-2621.2009.02055.x

Venkatesan R, Rajeswari N. ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polym Adv Technol. 2017;28(1):20–27. https://doi.org/10.1002/pat.3847

Struller C, Kelly P, Copeland N. Aluminum oxide barrier coatings on polymer films for food packaging applications. Surface Coat Technol. 2014;241:130–137. https://doi.org/10.1016/j.surfcoat.2013.08.011

Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S. PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Poly-Plas Technol Eng. 2017;56(12):1307–1344. https://doi.org/10.1080/03602559.2016.1275684

Khalaj M-J, Ahmadi H, Lesankhosh R, Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: nano-clay modified with iron nanoparticles. Trends Food Sci Technol. 2016;51:41–48. https://doi.org/10.1016/j.tifs.2016.03.007

Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10-11):1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

Idumah CI, Hassan A, Ihuoma DE. Recently emerging trends in polymer nanocomposites packaging materials. Polym-Plast Technol Mater. 2019;58(10):1054–1109. https://doi.org/10.1080/03602559.2018.1542718

Arora A, Padua G. Nanocomposites in food packaging. J Food Sci. 2010;75(1):R43–R49. https://doi.org/10.1111/j.1750-3841.2009.01456.x

Honarvar Z, Hadian Z, Mashayekh M. Nanocomposites in food packaging applications and their risk assessment for health. Elect Phy. 2016;8(6):e2531. https://doi.org/10.19082%2F2531

Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test. 2003;22(4):453–461. https://doi.org/10.1016/S0142-9418(02)00126-5

Assaedi H, Shaikh F, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceram Soc. 2016;4(1):19–28. https://doi.org/10.1016/j.jascer.2015.10.004

Gaikwad K, Ko S. Overview on in polymer-nano clay composite paper coating for packaging application. J Mater Sci Eng. 2015;4(1):e151.

Lagaron JM, Lopez-Rubio A. Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol. 2011;22(11):611–617. https://doi.org/10.1016/j.tifs.2011.01.007

Published
2024-10-22
How to Cite
1.
Zahra M, Jabeen T, Arshad H, Yasin M, Ali J. Synthesis and Applications of Nanocomposites in Food Packaging Industry: A Review. Sci Inquiry Rev. [Internet]. 2024Oct.22 [cited 2025Jan.21];8(3):135-58. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/5002
Section
Review Article