Synthesis and Applications of Nanocomposites in Food Packaging Industry: A Review
Abstract
Abstract Views: 0The current review focuses on the applications of polymer nanocomposites in the packing industry. Nanocomposite fabrication may be carried out through several synthetic techniques based on the type of material required. Basically, it is the composite formation of polymeric matrix and a reinforcing nanofiller. The nanoclay used for the modification of nanocomposites acts as a reinforcement or filler. Montmorillonite (MMT) is the most frequently used clay material to obtain the desired properties of nanocomposite. Clay reinforcement enhances the food packing properties of the material because of its properties as flame retardant, tensile features, barrier properties, and biodegradability. Among bottom-up and top-down techniques, sol-gel synthesis, self-assembly, and polymerization are the most common techniques used for the synthesis of nanocomposites. Nanocomposites derived from bio-polymers make the material biodegradable which, in turn, is one of the most desirable features for their future use. Owing to improved characteristics, clay nanocomposites form a superior class of materials for food packaging, yet much finer dispersion of nanofillers and compatibility may be devised.
Downloads
References
Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Compos Sci Technol. 2005;65(15-16):2344–2363. https://doi.org/10.1016/j.compscitech.2005.06.016
Musil J. Hard and superhard nanocomposite coatings. Surf Coat Technol. 2000;125(1-3):322–330. https://doi.org/10.1016/S0257-8972(99)00586-1
Caseri W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol Rapid Commun. 2000;21(11):705–722. https://doi.org/10.1002/1521-3927(20000701)21:11%3C705::AID-MARC705%3E3.0.CO;2-3
García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym. 2011;84(1):203–210. https://doi.org/10.1016/j.carbpol.2010.11.024
Caseri W. Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Commun. 2008;196(5):549–572. https://doi.org/10.1080/00986440802483954
Kotsuchibashi Y, Nakagawa Y, Ebara M. Nanoparticles. In: Ebara M, eds. Biomaterials Nanoarchitectonics. Elsevier; 2016:7–23. https://doi.org/10.1016/B978-0-323-37127-8.00002-9
Avella M, Errico M, Martelli S, Martuscelli E. Preparation methodologies of polymer matrix nanocomposites. Appl Organomet Chem. 2001;15(5):435–439. https://doi.org/10.1002/aoc.168
Bruce IJ, Taylor J, Todd M, et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater. 2004;284:145–160. https://doi.org/10.1016/j.jmmm.2004.06.032
Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. J Mater Chem. 1998;8(4):1019–1027. https://doi.org/10.1039/A706614G
Porhemmat S, Ghaedi M, Rezvani AR, Azqhandi MHA, Bazrafshan AA. Nanocomposites: synthesis, characterization and its application to removal azo dyes using ultrasonic assisted method: modeling and optimization. Ultrason Sonochem. 2017;38:530–543. https://doi.org/10.1016/j.ultsonch.2017.03.053
Zhang Y, Rhee KY, Hui D, Park S-J. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos Eng. 2018;143:19–27. https://doi.org/10.1016/j.compositesb.2018.01.028
Helliwell JR. X-ray nanochemistry concepts and development. Crystall Rev. 2018;24(4): 276–280. https://doi.org/10.1080/0889311X.2018.1526173
Adnan MM, Dalod AR, Balci MH, Glaum J, Einarsrud M-A. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers. 2018;10(10):e1129. https://doi.org/10.3390/polym10101129
Souza VH, Oliveira MM, Zarbin AJ. Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices. J Power Sour. 2017;348:87–93. https://doi.org/10.1016/j.jpowsour.2017.02.064
Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci. 2019;1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004
Li G, Zhang X, Zhang H, Liao C, Jiang G. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl Catal Enviro. 2019;249:147–154. https://doi.org/10.1016/j.apcatb.2019.03.007
Luan J, Wang S, Hu Z, Zhang L. Synthesis techniques, properties and applications of polymer nanocomposites. Curr Org Synthe. 2012;9(1):114–136. https://doi.org/10.1016/j.apcatb.2019.03.007
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12:1–39. https://doi.org/10.1590/S1516-14392009000100002
Sajjadi SP. Sol-gel process and its application in Nanotechnology. J Polym Eng Technol. 2005;13:38–41.
Subbarao PS, Aparna Y, Chitturi KL. Synthesis and characterization of Ni doped SnO2 nanoparticles by sol-gel method for novel applications. Mater Today. 2020;26:1676–1680. https://doi.org/10.1016/j.matpr.2020.02.353
Chen D-H, He X-R. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull. 2001;36(7-8):1369–1377. https://doi.org/10.1016/S0025-5408(01)00620-1
Shen G, Chen Y, Lin C. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films. 2005;489(1-2):130–136. https://doi.org/10.1016/j.tsf.2005.05.016
Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM. Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci. 2005;283(2):392–396. https://doi.org/10.1016/j.jcis.2004.08.184
Li L-L, An H-W, Peng B, Zheng R, Wang H. Self-assembled nanomaterials: design principles, the nanostructural effect, and their functional mechanisms as antimicrobial or detection agents. Mater Horiz. 2019;6(9):1794–1811. https://doi.org/10.1039/C8MH01670D
Yan Y, Tang H, Li J, et al. Self-assembly synthesis of a unique stable cocoon-like hematite@ C nanoparticle and its application in lithium ion batteries. J Colloid Interface Sci. 2017;495:157–167. https://doi.org/10.1016/j.jcis.2016.12.067
England MW, Sato T, Urata C, Wang L, Hozumi A. Transparent gel composite films with multiple functionalities: Long-lasting anti-fogging, underwater superoleophobicity and anti-bacterial activity. J Coll Interface Sci. 2017;505:566–576. https://doi.org/10.1016/j.jcis.2017.06.038
Bergamasco R, Coldebella PF, Camacho FP, et al. Self-assembly modification of polyamide membrane by coating titanium dioxide nanoparticles for water treatment applications. Rev Ambient Água. 2019;14(3):e2297. https://doi.org/10.4136/ambi-agua.2297
Wang W, Wang X, Pan Y, et al. Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics. Ind Eng Chem Res. 2017;56(23):6664–6670. https://doi.org/10.1021/acs.iecr.7b01293
Chen C, Du C, Weng D, Mahmood A, Feng D, Wang J. Robust superhydrophobic polytetrafluoroethylene nanofibrous coating fabricated by self-assembly and its application for oil/water separation. ACS Appl Nano Mater. 2018;1(6):2632–2639. https://doi.org/10.1021/acsanm.8b00315
Demazeau G. Solvothermal processes: definition, key factors governing the involved chemical reactions and new trends. J Nat Sci B. 2010;65(8):999–1006. https://doi.org/10.1515/znb-2010-0805
Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomat Sci. 2018;6(6):1312–1338. https://doi.org/10.1039/C8BM00021B
Rudolph P, Kakimoto K. Crystal growth from the melt under external force fields. MRS Bullet. 2009;34(4):251–258. https://doi.org/10.1557/mrs2009.75
Moran DA, Soares JB. Starch‐based composites using mature fine tailings as fillers. Canad J Chem Eng. 2017;95(10):1901–1908. https://doi.org/10.1002/cjce.22904
Sookyung U, Nakason C, Thaijaroen W, Vennemann N. Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polym Test. 2014;33:48–56. https://doi.org/10.1016/j.polymertesting.2013.11.006
Vaezi K, Asadpour G, Sharifi SH. Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: fundamental properties and biodegradability study. Int J Biol Macromol. 2020;146:374–386. https://doi.org/10.1016/j.ijbiomac.2020.01.007
Zare Y. Recent progress on preparation and properties of nanocomposites from recycled polymers: a review. Waste Manag. 2013;33(3):598–604. https://doi.org/10.1016/j.wasman.2012.07.031
Mansor M, Fadzullah S, Masripan N, Omar G, Akop M. Comparison between functionalized graphene and carbon nanotubes: effect of morphology and surface group on mechanical, electrical, and thermal properties of nanocomposites. In: Jawaid M, Bouhfid R, Qaiss AK, eds. Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier; 2019:177–204. https://doi.org/10.1016/B978-0-12-814548-7.00009-X
Lee S, Shupe TF, Groom LH, Hse CY. Maleated polypropylene film and wood fiber handsheet laminates. Polym Compos. 2009;30(12):1864–1872. https://doi.org/10.1002/pc.20761
Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science. 2016;354(6317):1257–1260. https://doi.org/10.1126/science.aag2879
Zhao W, Li T, Li Y, et al. Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. J Mater. 2018;4(2):157–164. https://doi.org/10.1016/j.jmat.2018.01.006
Zare Y, Rhee KY, Hui D. Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos Eng. 2017;122:41–46. https://doi.org/10.1016/j.compositesb.2017.04.008
Rhim J-W, Hong S-I, Ha C-S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Technol. 2009;42(2):612–617. https://doi.org/10.1016/j.lwt.2008.02.015
Sothornvit R, Rhim J-W, Hong S-I. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng. 2009;91(3):468–473. https://doi.org/10.1016/j.jfoodeng.2008.09.026
Garcia CV, Shin GH, Kim JT. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci Technol. 2018;82:21–31. https://doi.org/10.1016/j.tifs.2018.09.021
Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062. https://doi.org/10.1021/nn5020787
Abdolmohammadi S, Yunus WMZW, Rahman MZA, Ibrahim NA. Effect of organoclay on mechanical and thermal properties of polycaprolactone/chitosan/montmorillonite nanocomposites. J Reinforc Plast Compos. 2011;30(12):1045–1054. https://doi.org/10.1177/0731684411410338
Wu Z, Huang Y, Xiao L, et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int J Biol Macromol. 2019;123:569–575. https://doi.org/10.1016/j.ijbiomac.2018.11.071
Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SK. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem. 2018;11(1):120–127. https://doi.org/10.1016/j.arabjc.2016.09.008
Ray S, Quek SY, Easteal A, Chen XD. The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng. 2006;2(4):e5. https://doi.org/10.2202/1556-3758.1149
Jorda-Beneyto M, Ortuño N, Devis A, et al. Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Food Addit Contam. 2014;31(3):354–363. https://doi.org/10.1080/19440049.2013.874045
Berekaa MM. Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol Appl Sci. 2015;4(5):345–357.
Störmer A, Bott J, Kemmer D, Franz R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends In Food Sci Technol. 2017;63:39–50. https://doi.org/10.1016/j.tifs.2017.01.011
Chawengkijwanich C, Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol. 2008;123(3):288–292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
Cerrada ML, Serrano C, Sánchez‐Chaves M, et al. Self‐sterilized EVOH‐TiO2 nanocomposites: interface effects on biocidal properties. Adv Function Mater. 2008;18(13):1949–1960. https://doi.org/10.1002/adfm.200701068
Farhoodi M, Mohammadifar MA, Mousavi M, Sotudeh‐Gharebagh R, Emam‐Djomeh Z. Migration kinetics of ethylene glycol monomer from pet bottles into acidic food simulant: effects of nanoparticle presence and matrix morphology. J Food Proc Eng. 2017;40(2):e12383. https://doi.org/10.1111/jfpe.12383
Li X, Xing Y, Jiang Y, Ding Y, Li W. Antimicrobial activities of ZnO powder‐coated PVC film to inactivate food pathogens. Int J Food Sci Technol. 2009;44(11):2161–2168. https://doi.org/10.1111/j.1365-2621.2009.02055.x
Venkatesan R, Rajeswari N. ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polym Adv Technol. 2017;28(1):20–27. https://doi.org/10.1002/pat.3847
Struller C, Kelly P, Copeland N. Aluminum oxide barrier coatings on polymer films for food packaging applications. Surface Coat Technol. 2014;241:130–137. https://doi.org/10.1016/j.surfcoat.2013.08.011
Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S. PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Poly-Plas Technol Eng. 2017;56(12):1307–1344. https://doi.org/10.1080/03602559.2016.1275684
Khalaj M-J, Ahmadi H, Lesankhosh R, Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: nano-clay modified with iron nanoparticles. Trends Food Sci Technol. 2016;51:41–48. https://doi.org/10.1016/j.tifs.2016.03.007
Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10-11):1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
Idumah CI, Hassan A, Ihuoma DE. Recently emerging trends in polymer nanocomposites packaging materials. Polym-Plast Technol Mater. 2019;58(10):1054–1109. https://doi.org/10.1080/03602559.2018.1542718
Arora A, Padua G. Nanocomposites in food packaging. J Food Sci. 2010;75(1):R43–R49. https://doi.org/10.1111/j.1750-3841.2009.01456.x
Honarvar Z, Hadian Z, Mashayekh M. Nanocomposites in food packaging applications and their risk assessment for health. Elect Phy. 2016;8(6):e2531. https://doi.org/10.19082%2F2531
Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test. 2003;22(4):453–461. https://doi.org/10.1016/S0142-9418(02)00126-5
Assaedi H, Shaikh F, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceram Soc. 2016;4(1):19–28. https://doi.org/10.1016/j.jascer.2015.10.004
Gaikwad K, Ko S. Overview on in polymer-nano clay composite paper coating for packaging application. J Mater Sci Eng. 2015;4(1):e151.
Lagaron JM, Lopez-Rubio A. Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol. 2011;22(11):611–617. https://doi.org/10.1016/j.tifs.2011.01.007
Copyright (c) 2024 Manzar Zahra, Tayyaba Jabeen, Hammad Arshad, Muhammad Yasin, Jigar Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.