Cultivation, Identification, and Parameter Optimization of Chicken Embryo Fibroblast (CEF) in Primary Culture
Abstract
Abstract Views: 0Chicken eggs have frequently been used as research models for pathogenic disease processes and human research biology. The inflammatory responses and immune suppressions significantly influence the growth of chicken embryo fibroblasts’s (CEFs) growth. In the current study, CEFs were isolated, grown and effect of temperature, serum, incubation, and viral growth were examined. An inverted microscope confirmed morphological features and spindle shape CEFs. It was revealed that 37 ºC temperature, 24-48 h incubation time, and 10% fetal bovine serum (FBS) solution are best optimal conditions for cultivation of CEFs. Viral growth was more prominent with an increase in incubation time span. Haemagglutination (HA) and haemagglutination inhibition (HI) assays confirmed 1024 virus counts and 6 titer of blood. The current study is a contribution to the literature that could be explored to model a platform for the development of viral vaccines by using CEFs cultures.
Downloads
References
McGeady TA, Quinn PJ, Fitzpatrick ES, Ryan MT, Kilroy D, Lonergan P. Veterinary Embryology. John Wiley & Sons; 2017.
Garcia P, Wang Y, Viallet J, Jilkova ZM. The chicken embryo model: a novel and relevant model for immune-based studies. Front Immunol. 2021;12:e791081. https://doi.org/10.3389/fimmu.2021.791081
O’Connell AK, Douam F. Humanized mice for live-attenuated vaccine research: from unmet potential to new promises. Vaccines. 2020;8(1):e36. https://doi.org/10.3390/vaccines8010036
Prescott MA, Moulton H, Pastey MK. An alternative strategy to increasing influenza virus replication for vaccine production in chicken embryo fibroblast (DF-1) cells by inhibiting interferon alpha and beta using peptide-conjugated phosphorodiamidate morpholino oligomers. J Med Microbiol. 2024;73(2):e001807. https://doi.org/10.1099/jmm.0.001807
Haddas R. Newcastle disease virus. Infect Dis. 2023;2023:e427.
Liu W, Xu Z, Wang S, et al. MicroRNA transcriptome analysis of chicken embryo fibroblast cells infected with Newcastle disease virus variants. Animal Dis. 2023;3(1):e21. https://doi.org/10.1186/s44149-023-00082-y
Nurcan U, Gurgen SG, Sarsmaz HY, Umur AS. Use of chicken embryos as an angiogenesis model for central nervous system malignant tumor research. Turkish Neurosurg. 2023;33(3):413–422.
Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Nat Acad Sci. 2006;103(5):1475–1479. https://doi.org/10.1073/pnas.0510857103
Yeung C-YC, Zeef LA, Lallyett C, Lu Y, Canty-Laird EG, Kadler KE. Chick tendon fibroblast transcriptome and shape depend on whether the cell has made its own collagen matrix. Sci Rep. 2015;5(1):e13555. https://doi.org/10.1038/srep13555
Varkey M, Ding J, Tredget EE. Differential collagen–glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: potential therapeutic targets for hypertrophic scar. Biomaterials. 2011;32(30):7581–7591. https://doi.org/10.1016/j.biomaterials.2011.06.070
Herawati E, Gayatri GR. Cryopreservation and biological characteristics of Bangkok chicken (Thai Game Fowl) embryonic fibroblast cell culture. Poult Sci J. 2024;12(1):65–73.
George AS. Cultivating sustainability: The development and potential of cell-cultured beef rice as a novel high-protein food alternative. Part Univer Int Res J. 2024;3(1):1–24. https://doi.org/10.5281/zenodo.10800816
Kopač I, Batista U, Cvetko E, Marion L. Viability of fibroblasts in cell culture after treatment with different chemical retraction agents. J Oral Rehabil. 2002;29(1):98–104. https://doi.org/10.1046/j.1365-2842.2002.00790.x
Park TS, Lee HJ, Kim KH, Kim J-S, Han JY. Targeted gene knockout in chickens mediated by TALENs. Proc Nat Acad Sci. 2014;111(35):12716–12721. https://doi.org/10.1073/pnas.1410555111
Kain KH, Miller JW, Jones‐Paris CR, et al. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Develop Dynam. 2014;243(2):216–228. https://doi.org/10.1002/dvdy.24093
Nassari S, Blavet C, Bonnin M-A, Stricker S, Duprez D, Fournier-Thibault C. The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep. 2017;7(1):e17279. https://doi.org/10.1038/s41598-017-17490-z
Chudzik K. Generation Of Induced Pluripotent Stem Cells From Fibroblast Cell Lines And Gene Editing In Pluripotent Stem Cell [Graudation thesis]. IMC University of Applied Sciences; 2016.
Mustonen V, Kesäniemi J, Lavrinienko A, et al. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol. 2018;19(1):1–10. https://doi.org/10.1186/s12860-018-0169-9
Rekha K, Sivasubramanian C, Chung I-M, Thiruvengadam M. Growth and replication of infectious bursal disease virus in the DF-1 cell line and chicken embryo fibroblasts. BioMed Res Int. 2014;2014:e494835. https://doi.org/10.1155/2014/494835
Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nature Mater. 2015;14(12):1252–1261. https://doi.org/10.1038/nmat4389
Kim D-H, Lee J, Suh Y, Cressman M, Lee K. Research note: all-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes. Poult Sci. 2020;99(12):7142–7146. https://doi.org/10.1016/j.psj.2020.09.006
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149(2):121–130. https://doi.org/10.1093/jb/mvq121
Chong SG, Sato S, Kolb M, Gauldie J. Fibrocytes and fibroblasts—Where are we now. Int J Biochem Cell Biol. 2019;116:e105595. https://doi.org/10.1016/j.biocel.2019.105595
Bai C, Wang D, Li C, Jin D, Guan W, Ma Y. Establishment and biological characteristics of a Jingning chicken embryonic fibroblast bank. Eur J Histochem. 2011;55(1):e4. https://doi.org/10.4081%2Fejh.2011.e4
Kong B-W, Lee JY, Bottje WG, Lassiter K, Lee J, Foster DN. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. BMC Genom. 2011;12:1–19. https://doi.org/10.1186/1471-2164-12-571
Narayana DHA, Madhusudana SN, Sampath G, et al. Safety and immunogenicity study of a new purified chick embryo cell rabies vaccine Vaxirab-N (Pitman–Moore strain) manufactured in India. Human Vacc Immunotherap. 2014;10(1):120–125. https://doi.org/10.4161/hv.26456
Öztürk N, Korkmaz S, Öztürk Y. Wound-healing activity of St. John's Wort (Hypericum perforatum L.) on chicken embryonic fibroblasts. J Ethnopharmacol. 2007;111(1):33–39. https://doi.org/10.1016/j.jep.2006.10.029
Hornemann S, Harlin O, Staib C, et al. Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J Virol. 2003;77(15):8394–8407. https://doi.org/10.1128/jvi.77.15.8394-8407.2003
Xu H, Xu X, He H, et al. Regulation of Wnt/β-catenin signaling by Marek’s disease virus in vitro and in vivo. Front Microbiol. 2024;15:e1388862. https://doi.org/10.3389/fmicb.2024.1388862
Zhang T, Wang S, Liu Y, Qi X, Gao Y. Advances on adaptive immune responses affected by infectious bursal disease virus in chicken. Front Immunol. 2024;14:e1330576. https://doi.org/10.3389/fimmu.2023.1330576
Akhmedov BN. Clinical signs and pathological changes and differential diagnosis of marek's disease of poultry. Excellencia: Int Multi-discipl J Edu. 2024;2(2):145–150.
Kurnia RS, Setiawaty R, Natih KKN, et al. Evaluation of inhibitor activity of bacterial sialidase from Clostridium perfringens against Newcastle disease virus in the cell culture model using chicken embryo fibroblast. J Adv Veter Anim Res. 2022;9(2):335–345. https://doi.org/10.5455%2Fjavar.2022.i600
Ghavami S, Dolatkhah M, Farjah G. The effect of chick embryo cerebro-spinal fluid in microwave irradiated collagen guide channel on sciatic nerve regeneration in rat. MOJ Anat Physiol. 2016;2(3):e00047.
Yang F, Lei X, Rodriguez-Palacios A, Tang C, Yue H. Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup J. BMC Res Notes. 2013;6(1):1–5. https://doi.org/10.1186/1756-0500-6-402
Gheidariy MK, Khalesi B, Ghaderi M, Taghizadeh M, Shahkarami MK, Razakani HK. Evaluation and optimization of chick embryo fibroblasts for production of a fowl pox vaccine based on cell culture. Iran J Virol. 2020;14(2):6–15
Verma A, Verma M, Singh A. Animal tissue culture principles and applications. In: Verma AS, Singh A. eds. Animal Biotechnology. Elsevier; 2020:269–293.
Sohaimi NM, Clifford UC. The importance and challenges of primary chicken embryo liver cells in studies of poultry viral diseases: a review. J World's Poult Res. 2023;13(4):364–372.
Rasool A, Ata S, Islam A, et al. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels. Int J Biol Macromol. 2020;147:67–78. https://doi.org/10.1016/j.ijbiomac.2020.01.073
Qureshi MAUR, Arshad N, Rasool A, et al. Kappa-carrageenan and sodium alginate-based pH-responsive hydrogels for controlled release of methotrexate. Royal Soc Open Sci. 2024;11(4):e231952. https://doi.org/10.1098/rsos.231952
Rasool A, Islam A, Fayyaz S. Hydrogels and their emerging applications. In: Kumar A, Gupta R, eds. Hydrogels. 2023;103–126.
Pasitka L, Cohen M, Ehrlich A, et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nature Food. 2023;4(1):35–50.
Yip CW, Hon CC, Zeng F, Leung FCC. Cell culture-adapted IBDV uses endocytosis for entry in DF-1 chicken embryonic fibroblasts. Virus Res. 2012;165(1):9–16. https://doi.org/10.1016/j.virusres.2011.12.016
Totty H, Miller E, Moreno E, Dunne WM, Jr., Deol P. Comparison of mechanical disruption techniques for rapid inactivation of Mycobacterium and Nocardia species before identification using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry. J Clinic Microbiol. 2016;54(10):e2626. https://doi.org/10.1128/jcm.01096-16
Arora M. Cell culture media: a review. Mater Meth. 2013;3:e175.
Arshad N, Rasool A. Graphene oxide reinforced biopolymeric (chitosan) hydrogels for controlled cephradine release. Int J Biol Macromolecul. 2023;242:e124948. https://doi.org/10.1016/j.ijbiomac.2023.124948
Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohyd Polym. 2019;203:423–429. https://doi.org/10.1016/j.carbpol.2018.09.083
Ata S, Rasool A, Islam A, et al. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromolecul. 2020;155:1236–1244. https://doi.org/10.1016/j.ijbiomac.2019.11.091
Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Rasheed T. Guar gum-based stimuli responsive hydrogels for sustained release of diclofenac sodium. Int J Biol Macromolecul. 2023;250:e126275. https://doi.org/10.1016/j.ijbiomac.2023.126275
Tolentino LKS, Enrico EJG, Listanco RLM, Ramirez MAM, Renon TLU, Samson MRB. Development of fertile egg detection and incubation system using image processing and automatic candling. Paper presented at: TENCON 2018 - 2018 IEEE Region 10 Conference; 28–31 October 2018; Jeju, South Korea. https://doi.org/10.1109/TENCON.2018.8650320
Liu L, Ngadi M. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioproc Technol. 2013;6:2503–2513. https://doi.org/10.1007/s11947-012-0933-3
El‐Ghali N, Rabadi M, Ezin AM, De Bellard ME. New methods for chicken embryo manipulations. Microscop Res Tech. 2010;73(1):58–66. https://doi.org/10.1002/jemt.20753
Feinberg EC, Santoro N, Cedars MI, Amato P. An egg is not a chicken and an embryo is not a child. Fert Ster. 2024;121(5):752–753. https://doi.org/10.1016/j.fertnstert.2024.03.013
Shittu I, Zhu Z, Lu Y, et al. Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine. Biologicals. 2016;44(1):24–32. https://doi.org/10.1016/j.biologicals.2015.09.002
Van der Valk J, Bieback K, Buta C, et al. Fetal bovine serum (FBS): past–present–future. Altex. 2018;35(1):99–118. https://doi.org/10.14573/altex.1705101
Nielsen OB, Hawkes PW. Fetal bovine serum and the slaughter of pregnant cows: animal welfare and ethics. Bioproc J. 2019;18:1–4.
Phelan MC, Lawler G. Cell counting. Curr Protocol Cytom. 1997;(1):1–4.
Bencina D. Haemagglutinins of pathogenic avian mycoplasmas. Avian Pathol. 2002;31(6):535–547. https://doi.org/10.1080/0307945021000024526
Stephenson I, Wood J, Nicholson K, Zambon M. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J Med Virol. 2003;70(3):391–398. https://doi.org/10.1002/jmv.10408
Decuypere E, Tona K, Bruggeman V, Bamelis F. The day-old chick: a crucial hinge between breeders and broilers. World's Poul Sci J. 2001;57(2):127–138. https://doi.org/10.1079/WPS20010010
Riss TL, Moravec RA, Niles AL, et al. Cell viability assays. In: Markossian S, Grossman A, Brimacombe K, et al., eds. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2016.
Liu S, Yang W, Li Y, Sun C. Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci Rep. 2023;13(1):e1942. https://doi.org/10.1038/s41598-023-29060-7
Hassan A, Ahn J, Suh Y, Choi YM, Chen P, Lee K. Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis. J Nutr Biochem. 2014;25(8):858–867. https://doi.org/10.1016/j.jnutbio.2014.03.018
Copyright (c) 2024 Muhammad Naqeeb Ur Rehman Qureshi, Mazhar Qayyum, Aayesha Riaz, Muhammad Sajid Nadeem, Atta Rasool, Muhammad Anees Ur Rehman Qureshi
This work is licensed under a Creative Commons Attribution 4.0 International License.