Computation of Tades of Some Families of Graphs
Abstract
Abstract Views: 0This study presents novel and efficient techniques for computing the Total Absolute Difference Edge Irregularity Strength (TADES) of several well-known graph families. Specifically, the focus remains on book graphs with pentagonal pages, the hairy cycle graph, and three-regular graphs. For these increasingly complex graph structures, innovative algorithmic methods are introduced that significantly reduce the computational complexity of determining TADES, thus contributing valuable insights and advancements to the study of graph theory.
Downloads
References
Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Ruiz S, Saba F. Irregular networks. Congr Numer. 1988;64:197–210.
Bac̆a M, Miller M, Ryan J. On irregular total labellings. Discrete Math. 2007;307(11-12):1378–1388. https://doi.org/10.1016/j.disc.2005.11.075
Ivanc̆o J, Jendrol S. Total edge irregularity strength of trees. Discuss Math Graph Theory. 2006;26(3):449–456. https://doi.org/10.7151/dmgt.1337
Siddiqui MK, Arumugam S. On total edge irregularity strength of categorical product of cycle and path. AKCE Int J Graphs Combinat. 2012;9(1):43–52.
Jendrol S, Miskuf J, Soták R. Total edge irregularity strength of complete graphs and complete bipartite graphs. Discrete Math. 2010;310(3):400–407. https://doi.org/10.1016/j.disc.2009.03.006
Ramalakshmi R, Kathiresan K. Total absolute difference edge irregularity strength of graphs. Kraguj J Math. 2022;46(6):895–903. https://10.46793/kgjmat2206.895r.
Lourdusamy A, Beaula FJ. Total absolute difference edge irregularity strength of some families of graphs. TWMS J Appl Eng Math. 2023;13(3):1005–1012.
Lourdusamy A, Beaula, FJ, Patrick F. Total absolute difference edge irregularity strength of Tp-tree graphs. Proyecciones. 2023;42(6):1597–1614. http://dx.doi.org/10.22199/issn.0717-6279-5411
Irawan W, Sugeng KA. Quadratic embedding constants of hairy cycle graphs. J Phy. 2021;1722(1):e012046. http://0.1088/1742-6596/1722/1/012046.
Lourdusamy A, Patrick F. Sum divisor cordial labeling for path and cycle related graphs. J Prime Res Math. 2019;15:101–114.
Ahmad A, Siddiqui MK, Ibrahim M, Asif M. On the total irregularity strength of generalized Petersen graph. Math Rep. 2016;18:197–204.
Liu JB, Wang X, Cao J. The coherence and properties analysis of balanced 2p -Ary tree networks. IEEE Trans Network Sci Eng. 2024;11(5):4719–4728. https://doi.org/10.1109/TNSE.2024.3395710
Liu JB, Zhang X, Cao J, Chen L. Mean first-passage time and robustness of complex cellular mobile communication network. IEEE Trans Network Sci Eng. 2024;11(3):3066–3076. https://doi.org/10.1109/TNSE.2024.3358369
Przybyło J, Wei F. On the asymptotic confirmation of the faudree-lehel conjecture for general graphs. Combinatorica. 2023;43(2023):791–826.
Przybyło J, Wei F. Short proof of the asymptotic confirmation of the faudree-lehel conjecture. Electron J Combin. 2023;30(4):eP4.27. https://doi.org/10.37236/11413
Przybyło J. The irregularity strength of dense graphs - on asymptotically optimal solutions of problems of Faudree, Jacobson, Kinch and Lehel. Eur J Combin. 2024:e104013. https://doi.org/10.1016/j.ejc.2024.104013
Przybyło J. Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment. Eur J Combin. 2024;120:e10396. https://doi.org/10.1016/j.ejc.2024.103961
Copyright (c) 2024 Khurram Shabbir, Ahmad Raza, Liliana Guran
This work is licensed under a Creative Commons Attribution 4.0 International License.