An Overview of Antioxidant and Pharmacological Potential of Common Fruits

  • Shabbir Hussain Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan
  • Aqsa Sajjad Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan
  • Shumaila Zulfiqar Butt Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan
  • Muazzam Ali Muazzam Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan
Keywords: Fruits, Antioxidant, Aging, Pharmacological, Diseases

Abstract

Abstract Views: 480

This research was conducted to evaluate the antioxidant and pharmacological potential of numerous common fruits. Prunus Domestica (Prunes) are excellent sources of dietary antioxidants and cause the lowering of LDL cholesterol plasma level. Strawberries (Fragaria Ananassa) have ascorbic acid content (5-50 mg/100 g of fresh weight) and are effective in the treatment of oral cancer and cardiovascular diseases. Citrus fruits (Citrus limon) are rich in flavonoids (naringin and hesperidin), polyphenols and vitamin C; the extracts of citrus peels are effective against food borne bacteria. Lime oil from Citrus aurantifolia has been used as a component of skin care products and to impart taste and flavor in the food industry. Grapes (Vitis Vinifera) are rich in phenolic compounds and are active against cancer, cholera, smallpox, nausea, eye infections and skin/kidney/liver diseases. Blackberry (Rubus ulmifolius) contains polyphenol ingredients and has neuroprotection potential against age-related diseases. Different parts of Jamun or Java Plum (Syzygium Cumini) demonstrate an excellent antioxidant and antimicrobial potential and are used as a remedy for diabetes mellitus, leucorrhea, fever, constipation and gastropathy. Ziziphus mauritiana (Jujube) consists of cyclopeptide alkaloid, lupine and ceanathone triterpenes. It can be used in sedatives and analgesic; and exhibits excellent antibacterial and antioxidant potential. Vaccinium oxycoccus (cranberries) have 10mg/100g of ascorbic acid content and its extract can prevent urinary tract infections.

Copyright(c) The Authors

Downloads

Download data is not yet available.

References

Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytosci. 2018;4(1):1-8. https://doi.org/10.1186/s40816-018-0093-8

Farhat N, Hussain S, Syed SK, et al. Dietary phenolic compounds in plants: their antioxidant and pharmacological potential. Postepy Bio Komorki. 2020;47(3):307-320.

Kamran M, Hussain S, Abid MA, et al. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. Postepy Biol. Komorki. 2020;47(3):321-34.

Rehman A, Hussain S, Javed M, et al. Chemical composition and remedial perspectives of Hippophae rhamnoides linn. Postepy Bio Komorki. 2018;45(3):199-209.

Silva S, Gomes L, Leitao F, Coelho A, Boas LV. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci Technol Int. 2006;12(5):385-395. https://doi.org/10.1177/1082013206070166

Tarun E, Duduk V. Antioxidant Properties of Citrus Fruits Juice. International Sakharov Environmental Institute of Belarusian State University. 2016.

Miyake Y, Yamamoto K, Osawa T. Metabolism of antioxidant in lemon fruit (Citrus limon BURM. f.) by human intestinal bacteria. J Agri. Food Chem. 1997;45(10):3738-3742. https://doi.org/10.1021/jf970403r

Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res fundam Mol Mech. 2005;579(1-2):200-13. https://doi.org/10.1016/j.mrfmmm.2005.03.023

Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9(11):1123-1161. https://doi.org/10.3390/antiox9111123

Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF. Revealing the power of the natural red pigment lycopene. Molecules. 2010;15(2):959-987. https://doi.org/10.3390/molecules15020959

Mohideen FW. Comparison of Thermally Pasteurized and Ultrasonically Pasteurized Blueberry Juice (Vaccinium corymbosum) and an Investigation of Blueberry Juice Effect on Lipid Oxidation During Microencapsulation of Poly-Unsaturated Fish Oils. [Theis]. 2011. Fathima Waheeda Mohideen, Louisiana State University and Agricultural and Mechanical College.

Martín J, Kuskoski EM, Navas MJ, Asuero AG. Antioxidant capacity of anthocyanin pigments. Flavonoids-from Biosynthesis to Human Health. 2017;3:205-255.

Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5):451-479. https://doi.org/10.3390/antiox9050451

Xiao J, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22(1):23-38.

Zhang J, Xiao J, Giampieri F, et al. Inhibitory effects of anthocyanins on α-glucosidase activity. J Berry Res. 2019;9(1):109-123.

de Oliveira Raphaelli C, dos Santos Pereira E, et al. Apple phenolic extracts strongly inhibit α-glucosidase activity. Plant Foods Hum Nutr. 2019;74(3):430-435. https://doi.org/10.1007/s11130-019-00757-3

Di Majo D, Giammanco M, La Guardia M, Tripoli E, Giammanco S, Finotti E. Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Res Int. 2005;38(10):1161-1166.

Peterson JJ, Dwyer JT, Beecher GR, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compos Anal. 2006;19:S66-S73. https://doi.org/10.1016/j.jfca.2005.12.006

Jung UJ, Lee M-K, Jeong K-S, Choi M-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr. 2004;134(10):2499-503. https://doi.org/10.1093/jn/134.10.2499

Kunkel M, Seo A, Minten T. Magnesium binding by gum arabic, locust bean gum, and arabinogalactan. Food Chem. 1997;59(1):87-93. https://doi.org/10.1016/S0308-8146(96)00173-2

Donovan JL, Meyer AS, Waterhouse AL. Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J Agric Food Chem. 1998;46(4):1247-1252. https://doi.org/10.1021/jf970831x

Tinker LF, Davis PA, Schneeman BO. Prune fiber or pectin compared with cellulose lowers plasma and liver lipids in rats with diet-induced hyperlipidemia. J Nutr. 1994;124(1):31-40. https://doi.org/10.1093/jn/124.1.31

. Prunus domestica. https://en.wikipedia.org/wiki/Prunus_domestica

Škrovánková S, Kramářová D, Šimánková K, Hoza I. Determination of ascorbic acid by HPLC with electrochemical detection. Chem Listy. 2006;100:736.

Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40(W1):W22-W8. https://doi.org/10.1093/nar/gks554

Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol. 2014;740:248-254. https://doi.org/10.1016/j.ejphar.2014.06.065

. Encyclopædia Britannica. Strawberry plant and fruit. https://www.britannica.com/plant/strawberry

Chanthaphon S, Chanthachum S, Hongpattarakere T. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin. J Sci Technol. 2008;30(Suppl.1):125-131.

Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. InProceedings of the AMIA Symposium 2001 (p. 17). American Medical Informatics Association.

. Encyclopaedia Britannica. Lemon. https://www.britannica.com/plant/lemon

González-Estrada RR, Chalier P, Ragazzo-Sánchez JA, Konuk D, Calderón-Santoyo M. Antimicrobial soy protein based coatings: Application to Persian lime (Citrus latifolia Tanaka) for protection and preservation. Postharvest Biol Technol. 2017;132:138-44. https://doi.org/10.1016/j.postharvbio.2017.06.005

Jain S, Arora P, Popli H. A comprehensive review on Citrus aurantifolia essential oil: its phytochemistry and pharmacological aspects. Brazilian J Nat Sci. 2020;3(2):354-. https://doi.org/10.31415/bjns.v3i2.101

Lota M-L, de Rocca Serra D, Tomi F, Jacquemond C, Casanova J. Volatile components of peel and leaf oils of lemon and lime species. J Agric Food Chem. 2002;50(4):796-805. https://doi.org/10.1021/jf010924l

Moscoso-Ramírez PA, Montesinos-Herrero C, Palou L. Control of citrus postharvest penicillium molds with sodium ethylparaben. Crop Protect. 2013;46:44-51.

. Pngitem. https://www.pngitem.com/middle/ixmhmbo_citrus-aurantifolia-png-download-lime-fruit-transparent-png/

Terra X, Valls J, Vitrac X, et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem. 2007;55(11):4357-4365.

Nilgün G, Gülcan O, Osman S. Total phenolic contents and antibacterial activities of grape. Vitis vinifera. 2004;15(5):335-339. https://doi.org/10.1016/S0956-7135(03)00083-5

Kaur M, Agarwal C, Agarwal R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. J Nutr. 2009;139(9):1806S-12S. https://doi.org/10.3945/jn.109.106864

. Rawpixel. https://www.rawpixel.com/image/416431/premium-illustration-psd-grape-botanical-grape-psd-grape-vine-illustration

Patel A, Rojas-Vera J, Dacke C. Therapeutic constituents and actions of Rubus species. Curr Med Chem. 2004;11(11):1501-12. https://doi.org/10.2174/0929867043365143

Panizzi L, Caponi C, Catalano S, Cioni P, Morelli I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J Ethnopharmacol. 2002;79(2):165-8. https://doi.org/10.1016/S0378-8741(01)00363-4

Martini S, d’Addario C, Colacevich A, Focardi S, Borghini F, Santucci A, Figura N, Rossi C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int J Antimicrob Agents. 2009;34(1):50-9. https://doi.org/10.1016/j.ijantimicag.2009.01.010

Tavares L, Figueira I, McDougall GJ, et al. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur J Nutr. 2013;52(1):225-36. https://doi.org/10.1007/s00394-012-0307-7

Feresin RG, Zhang J, Elam M, Hooshmand S, Kim J-S, Arjmandi BH. Effects of blackberry and blueberry polyphenol extracts on NO, TNF-α, and COX-2 production in LPS-stimulated RAW264. 7 macrophages. Fed Am Soc Exp Bio. 2012;26(21):820-823. https://doi.org/10.1096/fasebj.26.1_supplement.823.20

. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:RUBUSULMIFOLIUS_-_MORROCURT_-_MORROCURT_-_IB-086_(Esbarzer).JPG

Baraiya NS, Rao TVR, Thakkar VR. Improvement of postharvest quality and storability of jamun fruit (Syzygium cumini L. Var. Paras) by zein coating enriched with antioxidants. Food Bioproc Tech. 2015;8(11):2225-34. https://doi.org/10.1007/s11947-015-1577-x

Mahmoud II, Marzouk MS, Moharram FA, El-Gindi MR, Hassan AM. Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry. 2001;58(8):1239-44.

Rahman A, Qureshi M, Zaman K, Malik S, Ali S. The alkaloids of Rhazya stricta and R. orientalis-a review. Fitoterapia. 1989;60(4):291-322.

Warrier P, Nambiar V, Ramankutty C. Indian Medicinal Plants. Orient Longman Ltd. 1996:225-228.

Bhandary M, Chandrashekar K, Kaveriappa K. Medical ethnobotany of the siddis of Uttara Kannada district, Karnataka, India. J Ethnopharmacol. 1995;47(3):149-158. https://doi.org/10.1016/0378-8741(95)01274-H

. Flicker. https://www.flickr.com/photos/56047685@N02/47848160422

Goyal M, Nagori BP, Sasmal D. Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana (Z. jujuba Lam., non Mill). Spatula DD. 2012;2(2):107-116.

Hussain H, Ahmad VU, Green IR, Krohn K, Hussain J, Badshah A. Antibacterial organotin (IV) compounds, their synthesis and spectral characterization. ARKIVOC. 2007;2007(14):289-99.

Asimuddin M, Shaik MR, Fathima N, et al. Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability. 2020;12(4):1484-1498. https://doi.org/10.3390/su12041484

Afroz R, Tanvir E, Islam MA, Alam F, Gan SH, Khalil MI. Potential Antioxidant and Antibacterial Properties of a Popular Jujube Fruit: A pple Kul (Z izyphus mauritiana). J. Food Biochem. 2014;38(6):592-601. https://doi.org/10.1111/jfbc.12100

Al Ghasham A, Al Muzaini M, Qureshi KA, et al. Phytochemical Screening, Antioxidant and Antimicrobial Activities of Methanolic Extract of Ziziphus mauritiana Lam. Leaves Collected from Unaizah, Saudi Arabia. Int J Pharm Res Allied Sci. 2017;6(3):33-46.

Mishra T, Khullar M, Bhatia A. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. Evid Based Complement Altern Med. 2011;2011. https://doi.org/10.1155/2011/765029

. Creative Markts. https://creativemarket.com/darksoul72/4514895-Ziziphus-mauritiana-chinese-date-featuring-fresh-plant-and-healthy

Ruse K, Sabovics M, Rakcejeva T, Dukalska L, Galoburda R, Berzina L. The effect of drying conditions on the presence of volatile compounds in cranberries. World Acad Sci Eng Technol. 2012;6(4):854-860.

Chu Y-F, Liu RH. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes. Life sci. 2005;77(15):1892-901. https://doi.org/10.1016/j.lfs.2005.04.002

Sun J, Marais JP, Khoo C, et al. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli. J Funct Foods. 2015;17:235-242. https://doi.org/10.1016/j.jff.2015.05.016

. IL Sentierosas Prodozone Plants Officinali. http://www.ilsentierosas.it/en/prodotti/ vaccinium-oxycoccos-var-oblongifolium-michx/

Published
2021-03-23
How to Cite
1.
Hussain S, Sajjad A, Butt SZ, Muazzam MA. An Overview of Antioxidant and Pharmacological Potential of Common Fruits. Sci Inquiry Rev. [Internet]. 2021Mar.23 [cited 2024Oct.18];5(1):1-18. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/1497
Section
Orignal Article