Evaluation of Thrombolytic Potential of Elaeagnus rhamnoides (L.) A. Nelson

  • Ayesha Rehman Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
  • Shabbir Hussain Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
  • Muhammad Ahmad Department of Chemistry, Division of Science and Technology, University of Education, Pakistan.
  • Muhammad Riaz Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab Lahore, Pakistan
  • Muhammad Amin Abid Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan.
  • Tanzeela Gulab Shazady Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
Keywords: E. rhamnoides (L.) A. Nelson (sea buckthorn or SBT), FTIR analysis, thrombolytic agents

Abstract

Abstract Views: 107

Plants find a special significance in the field of medicine due to their therapeutic value. Thrombolytic agents play a crucial role in the treatment of numerous human diseases including atherothrombotic diseases, pulmonary embolism, and myocardial infarction. The current study  was performed to evaluate the thrombolytic potential of Elaeagnus rhamnoides (L.) A. Nelson (Sea buckthorn or SBT). The extract of leaves, stems, and berries of the investigated plant displayed 28%, 26%, and 44% blood clot lysis, respectively as compared to that of a standard thrombolytic agent namely streptokinase (59% lysis). The fruit extract of sea buckthorn was found to display higher thrombolytic potential as compared to that of its leaves and stem. It was concluded that the extract of leaves, stem, and berries  of SBT may find applications  in the future as a thrombolytic agent. The presence of important functional groups  for instance, alcohol, aldehyde, alkyne, alkene, amines, and ester in different ariel parts of  SBT were verified by FTIR spectroscopy.

Downloads

Download data is not yet available.

References

Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin Phytosci. 2018;4(1):1-8. https://doi.org/10.1186/s40816-018-0093-8

Farhat N, Hussain S, Syed SK, et al. Dietary phenolic compounds in plants: Their antioxidant and pharmacological potential. Postepy Biol Komorki. 2020;47(3):307-320.

Naseer S, Hussain S, Zahid Z. Nutritional and Antioxidant Potential of Common Vegetables in Pakistan. RADS J Biol Res Appl Sci. 2019;10(1):36-40. https://doi.org/10.37962/jbas.v10i1.146

Kamran M, Hussain S, Abid MA, et al. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. Postepy Biol Komorki. 2020;47(3):321-334.

Marciniak B, Kontek R, Żuchowski J, Stochmal A. Novel bioactive properties of low-polarity fractions from sea-buckthorn extracts (Elaeagnus rhamnoides (L.) A. Nelson)–(in vitro). Biomed Pharmacother. 2021;135:e111141.

Olas B, Skalski B, Ulanowska K. The anticancer activity of sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front Pharmacol. 2018;9:e232. https://doi.org/10.3389/fphar.2018.00232

Zeb A. Important therapeutic uses of sea buckthorn (Hippophae): a review. J Biol Sci. 2004;4(5):687-693.

Narayanan S, Ruma D, Gitika B, et al. Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Mol Cell Biochem. 2005;278(1-2):9-14.

https://doi.org/10.1007/s11010-005-7636-2

Beveridge T, Li TS, Oomah BD, Smith A. Sea buckthorn products: manufacture and composition. J Agric Food Chem. 1999;47(9):3480-3488. https://doi.org/10.1021/jf981331m

Rehman A, Hussain S, Javed M, et al. Chemical composition and remedial perspectives of Hippophae rhamnoides linn. Postepy Biol Komorki. 2018;45(3):199-209.

Padwad Y, Ganju L, Jain M, et al. Effect of leaf extract of Seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int Immunopharmacol. 2006;6(1):46-52.

https://doi.org/10.1016/j.intimp.2005.07.015

Suryakumar G, Gupta A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol. 2011;138(2):268-278. https://doi.org/10.1016/j.jep.2011.09.024

Tabassum F, Chadni SH, Mou KN, Hasif KI, Ahmed T, Akter M. In- vitro thrombolytic activity and phytochemical evaluation of leaf extracts of four medicinal plants of Asteraceae family. J Pharmacogn

Phytochem. 2017;6(4):1166-1169.

Gao X, Ohlander M, Jeppsson N, Björk L, Trajkovski V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem. 2000;48(5):1485-1490. https://doi.org/10.1021/jf991072g

Geetha S, Ram MS, Mongia S, Singh V, Ilavazhagan G, Sawhney R. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium (VI) induced oxidative stress in albino rats. J Ethnopharmacol. 2003;87(2-3):247-251. https://doi.org/10.1016/S0378-8741(03)00154-5

Chauhan AS, Negi PS, Ramteke RS. Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia. 2007;78(7-8):590-592. https://doi.org/10.1016/j.fitote.2007.06.004

Chauhan B, Kumar G, Ali M. A review on phytochemical constituents and activities of Trachyspermum ammi (l.) Sprague fruits. Am J Pharmtech Res. 2012;2(4):329-340.

Gupta A, Kumar R, Pal K, Banerjee PK, Sawhney RC. A preclinical study of the effects of seabuckthorn (Hippophae rhamnoides L.) leaf extract on cutaneous wound healing in albino rats. Int J Low Extrem Wounds. 2005;4(2):88-92. https://doi.org/10.1177/1534734605277401

Larmo PS, Järvinen RL, Setälä NL, et al. Oral sea buckthorn oil attenuates tear film osmolarity and symptoms in individuals with dry eye. J Nutr. 2010;140(8):1462-1468. https://doi.org/10.3945/jn.109.118901

Kallio H, Baoru Y, Tahvonen R, Hakala M. Composition of seabuckthorn berries of various origins. The Global Seabuckthorn Research and Development. Sci China Press 2003;1(1):34-39.

Kallio H, Yang B, Peippo P, Tahvonen R, Pan R. Triacylglycerols, Glycerophospholipids, Tocopherols, and Tocotrienols in Berries and Seeds of Two Subspecies (ssp. sinensis and mongolica) of Sea Buckthorn (Hippopha> ë rhamnoides). J Agric Food Chem. 2002;50(10):3004-3009. https://doi.org/10.1021/jf011556o

Maheshwari D, Kumar MY, Verma SK, Singh VK, Singh SN. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol. 2011;49(9):2422-2428. https://doi.org/10.1016/j.fct.2011.06.061

Johansson AK, Korte H, Yang B, Stanley JC, Kallio HP. Sea buckthorn berry oil inhibits platelet aggregation. J Nutr Biochem. 2000;11(10):491-495. https://doi.org/10.1016/S0955-2863(00)00105-4

Ghangal R, Raghuvanshi S, Sharma PC. Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol Biochem. 2009;47(11-12):1113-1115.

https://doi.org/10.1016/j.plaphy.2009.09.004

Olas B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) oil. J Ethnopharmacol. 2018;213:183-190. https://doi.org/10.1016/j.jep.2017.11.022

Wen P, Zhao P, Qin G, et al. Genotoxicity and teratogenicity of seabuckthorn (Hippophae rhamnoides L.) berry oil. Drug Chem Toxicol. 2020;43(4):391-397. https://doi.org/10.1080/01480545.2018.1497047

Zielińska A, Nowak I. Abundance of active ingredients in sea- buckthorn oil. Lipids Health Dis. 2017;16(1):1-11.

https://doi.org/10.1186/s12944-017-0469-7

Zhao P, Wang S, Liang C, et al. Acute and subchronic toxicity studies of seabuckthorn (Hippophae rhamnoides L.) oil in rodents. Regul Toxicol Pharmacol. 2017;91:50-57. https://doi.org/10.1016/j.yrtph.2017.10.002

Chen ML, Yang DJ, Liu SC. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. Int J Food Sci

Technol. 2011;46(6):1179-1185. https://doi.org/10.1111/j.1365-2621.2011.02605.x

Rasheed RB, Hussain S, Syed SK. Phytochemistry, Nutritional and Medicinal Value of Kiwi Fruit. Postepy Biol Komorki. 2021;48(2):147-165.

Siddiqua A, Hussain S, Syed SK. Phytochemistry, Nutritional and Medicinal Importance of Almond. Postepy Biol Komorki. 2021;48(2):167-180.

Hussain S, Javed M, Abid MA, et al. Prunus avium L. Phytochemistry, nutritional and pharmacological review. Adv Life Sci. 2021;8(4):307-314.

Hussain S, Tanvir M, Ahmad M, Munawar KS. Phytochemical composition of Mint (Mentha), its nutritional and pharmacological potential. LGU J Life Sci. 2021;5(04):241-258. https://doi.org/10.54692/lgujls.2021.0504188

Sabir S, Maqsood H, Hayat I, Khan M, Khaliq A. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin. J Med Food. 2005;8(4):518- 522. https://doi.org/10.1089/jmf.2005.8.518

Shah AH, Ahmed D, Sabir M, Arif S, Khaliq I, Batool F. Biochemical and nutritional evaluations of sea buckthorn (hyppophae rhamnoides L. Spp. Turkestanica) from different locations of Pakistan. Pak J Bot. 2007;39(6):2059-2065.

Sabir S, Maqsood H, Ahmed S, Shah A, Khan M. Chemical and nutritional constituents of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries from Pakistan. Ital J Food Sci. 2005;17(4):455-

Nawaz MA, Khan AA, Khalid U, Buerkert A, Wiehle M. Superfruit in the Niche—Underutilized Sea Buckthorn in Gilgit-Baltistan, Pakistan. Sustain. 2019;11(20):e5840. https://doi.org/10.3390/su11205840

Skalski B, Kontek B, Lis B, et al. Biological properties of Elaeagnus rhamnoides (L.) A. Nelson twig and leaf extracts. BMC Complement Altern Med. 2019;19(1):1-12. https://doi.org/10.1186/s12906-019-2564-y

Skalski B, Kontek B, Rolnik A, Olas B, Stochmal A, Żuchowski J. Anti-platelet properties of phenolic extracts from the leaves and twigs of Elaeagnus rhamnoides (L.) A. Nelson. Mol. 2019;24(19):e3620.

https://doi.org/10.3390/molecules24193620

Wei Z, Zuo F, Wang W, et al. Protective effects of total flavones of Elaeagnus rhamnoides (L.) A. Nelson against vascular endothelial injury in blood stasis model rats. Evid Based Complementary Altern Med. 2017;2017. https://doi.org/10.1155/2017/8142562

Skalski B, Stochmal A, Żuchowski J, Grabarczyk Ł, Olas B. Response of blood platelets to phenolic fraction and non-polar fraction from the leaves and twigs of Elaeagnus rhamnoides (L.) A. Nelson in vitro. Biomed Pharmacother. 2020;124:e109897. https://doi.org/10.1016/j.biopha.2020.109897

Ren R, Li N, Su C, et al. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 2020;10(73):44654-44671. https://doi.org/10.1039/D0RA06488B

Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb J. 2006;4(1):e14. https://doi.org/10.1186/1477-9560-4-14

Tabassum F, Chandi SH, Mou KN, Hasif K, Ahamed T, Akter M. Invitro thrombolytic activity and phytochemical evaluation of leaf extracts of four medicinal plants of Asteraceae family. J Pharmacogn Phytochem. 2017;6(4):1166-1169.

Sikder MAA, Siddique AB, Hossian AN, Miah MK, Kaisar MA, Rashid MA. Evaluation of thrombolytic activity of four Bangladeshi medicinal plants, as a possible renewable source for thrombolytic compounds. J Pharm Nutr Sci. 2011;1(1):4-8. https://doi.org/10.6000/1927-5951.2011.01.01.02

Ramjan A, Hossain M, Runa JF, Md H, Mahmodul I. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds. AvicennaJ Phytomed. 2014;4(6):430-436.

Hossen S, Sarkar MMI, Jahid MA. Assessment of thrombolytic activity of five bangladeshi medicinal plants: potential source for thrombolytic compounds. Intern Blood Res Rev. 2014;2(6):262-269.

Published
2022-09-15
How to Cite
1.
Rehman A, Hussain S, Ahmad M, Riaz M, Amin Abid M, Gulab Shazady T. Evaluation of Thrombolytic Potential of Elaeagnus rhamnoides (L.) A. Nelson. Sci Inquiry Rev. [Internet]. 2022Sep.15 [cited 2024Dec.22];6(3):94-110. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/2135
Section
Orignal Article