Antibacterial Properties of Binuclear Zn(II)-Azomethine Complexes Derived from Diaminodiphenylsulphide Bridged Spacer

  • Aziza Sarwar 1. Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan 2. Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Nusrat Nabi Department of Chemistry, Faculty of Science, Sardar Bahadur Khan Women University, Quetta, Pakistan
  • Bushra Naureen 1. Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia, 2. Department of Pharmaceutical Sciences, Iqra University (Chak Shahzad), 45550, Islamabad, Pakistan
  • Bibi Sherino Department of Chemistry, Faculty of Science, Sardar Bahadur Khan Women University, Quetta, Pakistan
  • Mujtaba Ellahi Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
  • Hamida Panezai Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
Keywords: Azomethines, antibacterial activity, binuclear complexes, broth microdilution, well diffusion, Zn(II)

Abstract

Abstract Views: 173

The current research aims to study the antimicrobial resistance of microbes against once-effective treatments for the development of new drugs. Accordingly, three binuclear Zn(II)-Schiff bases complexes, ZnLa-ZnLc were prepared by the direct reaction of the ligands La-Lc with Zn(II) ions in equimolar ratios bearing salicylaldehyde with OH, NO2, and Cl functional groups. The synthesized compounds ZnLa-ZnLc were evaluated against gram-positive (E. faecalis, S. mutante, and S. aureus) and gram-negative (E. coli,  S. Typhi, and P. aeruginosa) bacterial strains by agar well diffusion and broth microdilution technology. Minimum inhibitory concentration (MIC90) values ​​were calculated using a microplate reader at 550 nm for optimal results. Binuclear Zn(II) complexes showed superior antibacterial activity as compared to their parent Schiff base ligands, which were clearly investigated from their respective MIC values ​​and the diameter of the growth inhibitory zone.  Additionally, E. faecalis were not active against the Schiff base ligand La-Lc, whereas their complexes ZnLa-ZnLc showed biological activity in an inhibition zone ranging from 9-10 mm to E. faecalis. In general, Schiff base 3,4-dihydroxy as well as its metal complex showed excellent antibacterial activity with zone of inhibition (13-26 mm)  and (10-28 mm), respectively. Therefore, the synthesized compounds may be promising entities in the field of medicine.

Downloads

Download data is not yet available.

References

Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorganic Med Chem. 2007;15(4):1725–1731. https://doi.org/10.1016/j.bmc.2006.12.003

Omar MM, Mohamed GG, Ibrahim AA. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;73(2):358–369. https://doi.org/10.1016/j.saa.2009.02.043

Naureen B, Miana GA, Shahid K, Asghar M, Tanveer S, Sarwar A. Iron (III) and zinc (II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. J Mol Struct. 2021;1231:e129946. https://doi.org/10.1016/j.molstruc.2021.129946

Naureen B, Miana GA, Shahid K, et al. Iron ( III ) and Zinc ( II ) Metal Alkaloid Complexes : Synthesis , Characterization and Biological Activities. Malay J Chem. 2021;23(3):55–73.

Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff Bases: A Versatile Pharmacophore. J Catal. 2013:2013(Mic):1–14. https://doi.org/10.1155/2013/893512

Krátký M, Dzurková M, Janoušek J, et al. Sulfadiazine salicylaldehyde-based schiff bases: Synthesis, antimicrobial activity and cytotoxicity. Molecules. 2017;22(9):1–15. https://doi.org/10.3390/molecules22091573

Qin W, Long S, Panunzio M, Biondi S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules. 2013;18(10):12264–12289. https://doi.org/10.3390/molecules181012264

Da Silva CM, Da Silva DL, Modolo L V., et al. Schiff bases: A short review of their antimicrobial activities. J Adv Res. 2011;2(1):1–8. https://doi.org/10.1016/j.jare.2010.05.004

Ebead YH, Salman HMA, Abdellah MA. Experimental and theoretical investigations of spectral, tautomerism and acid-base properties of Schiff bases derived from some amino acids. Bull Korean Chem Soc. 2010;31(4):850–858. https://doi.org/10.5012/bkcs.2010.31.04.850

Adão P, Martins AM, Avecilla F, Kuznetsov ML. Amino Alcohol-Derived Reduced Schi ff Base V. Inorg Chem. 2012;51:11430–11449.

Keypour H, Forouzandeh F, Salehzadeh S, et al. DNA binding studies and antibacterial properties of a new Schiff base ligand containing homopiperazine and products of its reaction with Zn(II), Cu(II) and Co(II) metal ions: X-ray crystal structure of Cu(II) and Zn(II) complexes. Polyhedron. 2019;170:584–592. https://doi.org/10.1016/j.poly.2019.06.023

Alaghaz ANMA, Zayed ME, Alharbi SA, Ammar RAA, Chinnathambi A. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes. J Mol Struct. 2015;1087:60–67. https://doi.org/10.1016/j.molstruc.2015.01.035

Abbasi Z, Behzad M, Ghaffari A, Rudbari HA, Bruno G. Mononuclear and dinuclear salen type copper(II) Schiff base complexes: Synthesis, characterization, crystal structures and catalytic epoxidation of cyclooctene. Inorganica Chim Acta. 2014;414(Ii):78–84. https://doi.org/10.1016/j.ica.2014.01.047

Amiri RH, Iravani MR, Moazam V, et al. Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes. J Mol Struct. 2016;1125(Iv):113–120. https://doi.org/10.1016/j.molstruc.2016.06.055

Gong D, Wang B, Jia X, Zhang X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalt Trans. 2014;43(10):4169–4178. https://doi.org/10.1039/c3dt52708e

Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev. 2008;252(12-14):1420–1450. https://doi.org/10.1016/j.ccr.2007.09.005

Khorshidifard M, Rudbari HA, Askari B, et al. Cobalt(II), copper(II), zinc(II) and palladium(II) Schiff base complexes: Synthesis, characterization and catalytic performance in selective oxidation of sulfides using hydrogen peroxide under solvent-free conditions. Polyhedron. 2015;95:1–13. https://doi.org/10.1016/j.poly.2015.03.041

Su H, Li Z, Huo Q, Guan J, Kan Q. Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Adv. 2014;4(20):9990–9996. https://doi.org/10.1039/c3ra47732k

Mahmoud WH, Mahmoud NF, Mohamed GG. Synthesis, physicochemical characterization, geometric structure and molecular docking of new biologically active ferrocene based Schiff base ligand with transition metal ions. Appl Organomet Chem. 2017;31(12):1–19. https://doi.org/10.1002/aoc.3858

Saini AK, Kumari P, Sharma V, Mathur P, Mobin SM. Varying structural motifs in the salen based metal complexes of Co(II), Ni(II) and Cu(II): Synthesis, crystal structures, molecular dynamics and biological activities. Dalt Trans. 2016;45(47):19096–19108. https://doi.org/10.1039/c6dt03573f

Ramesh R, Maheswaran S. Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J Inorg Biochem. 2003;96(4):457–462. https://doi.org/10.1016/S0162-0134(03)00237-X

Aslantaş M, Kendi E, Demir N, Şabik AE, Tümer M, Kertmen M. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;74(3):617–624. https://doi.org/10.1016/j.saa.2009.07.006

Biswal D, Pramanik NR, Chakrabarti S, et al. Supramolecular frameworks of binuclear dioxomolybdenum(vi) complexes with ONS donor ligands using 4,4′-azopyridine as a pillar: crystal structure, DFT calculations and biological study. New J Chem. 2015;39(11):8681–8694. https://doi.org/10.1039/c5nj01899d

Creaven BS, Duff B, Egan DA, et al. Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorganica Chim Acta. 2010;363(14):4048–4058. https://doi.org/10.1016/j.ica.2010.08.009

Ebrahimipour SY, Sheikhshoaie I, Castro J, et al. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium(VI) complexes incorporating tetradentate N2O2 Schiff base ligands. RSC Adv. 2015;5(115):95104–95117. https://doi.org/10.1039/c5ra17524k

Fahmi N, Shrivastava S, Meena R, Joshi SC, Singh R V. Microwave assisted synthesis, spectroscopic characterization and biological aspects of some new chromium(iii) complexes derived from N̂O donor Schiff bases. New J Chem. 2013;37(5):1445–1453. https://doi.org/10.1039/c3nj40907d

Keypour H, Shooshtari A, Rezaeivala M, Kup FO, Rudbari HA. Synthesis of two new N2O4 macroacyclic Schiff base ligands and their mononuclear complexes: Spectral, X-ray crystal structural, antibacterial and DNA cleavage activity. Polyhedron. 2015;97:75–82. https://doi.org/10.1016/j.poly.2015.02.029

Niu M, Li Z, Li H, Li X, Dou J, Wang S. DNA/protein interaction, cytotoxic activity and magnetic properties of amino-alcohol Schiff base derived Cu(II)/Ni(II) metal complexes: Influence of the nuclearity and metal ions. RSC Adv. 2015;5(47):37085–37095. https://doi.org/10.1039/c5ra00623f

Tabassum S, Amir S, Arjmand F, et al. Mixed-ligand Cu(II)-vanillin Schiff base complexes; Effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem. 2013;60:216–232. https://doi.org/10.1016/j.ejmech.2012.08.019

Terenzi A, Bonsignore R, Spinello A, et al. Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. RSC Adv. 2014;4(63):33245–33256. https://doi.org/10.1039/c4ra05355a

Majumdar D, Das D, Sreejith SS, et al. Dicyanamide-interlaced assembly of Zn(II)-schiff-base complexes derived from salicylaldimino type compartmental ligands: Syntheses, crystal structures, FMO, ESP, TD-DFT, fluorescence lifetime, in vitro antibacterial and anti-biofilm properties. Inorganica Chim Acta. 2019;489(Ii):244–254. https://doi.org/10.1016/j.ica.2019.02.022

Chakraborty S, Bhattacharjee CR, Mondal P, Prasad SK, Rao DSS. Synthesis and aggregation behaviour of luminescent mesomorphic zinc(ii) complexes with “salen” type asymmetric Schiff base ligands. Dalt Trans. 2015;44(16):7477–7488. https://doi.org/10.1039/c4dt03989k

Champness NR. The future of metal-organic frameworks. Dalt Trans. 2011;40(40):10311–10315. https://doi.org/10.1039/c1dt11184a

Kimura E, Aoki S, Kikuta E, Koike T. A macrocyclic zinc(II) fluorophore as a detector of apoptosis. Proc Natl Acad Sci U S A. 2003;100(7):3731–3736. https://doi.org/10.1073/pnas.0637275100

Abu Al-Nasr AK, Ramadan RM. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2013;105:14–19. https://doi.org/10.1016/j.saa.2012.12.008

Sarwar A, Bahron H, Nabi N, Ellahi M, Naureen B. Recent Trends in Luminescent Zn ( II ) and Ir ( III ) Complexes bearing a variety of Schiff base ligands. 2022;24(3):88-112.

Sarwar A, Saharin SM, Bahron H, Alias Y. Synthesis, structures, luminescence and thermal stability of Visible/NIR emitting binuclear azomethine-Zn(II) complexes. J Lumin. 2020;223(Jauary):e117227. https://doi.org/10.1016/j.jlumin.2020.117227

Sarwar A, Saharin SM, Bahron H, Alias Y. Dual emissive dinuclear Iridium(III) azomethine complexes: Synthesis, luminescence, thermal stability and antibacterial studies. J Lumin. 2021;233(December 2020):e117861. https://doi.org/10.1016/j.jlumin.2020.117861

Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–175. https://doi.org/10.1038/nprot.2007.521

Ndi CP, Semple SJ, Griesser HJ, Pyke SM, Barton MD. Antimicrobial compounds from Eremophila serrulata. Phytochemistry. 2007;68(21):2684–2690. https://doi.org/10.1016/j.phytochem.2007.05.039

Özdemir I, Gürbüz N, Doǧan Ö, Günal S, Özdemir I. Synthesis and antimicrobial activity of Ag(I)-N-heterocyclic carbene complexes derived from benzimidazol-2-ylidene. Appl Organomet Chem. 2010;24(11):758–762. https://doi.org/10.1002/aoc.1693

Moulari B, Pellequer Y, Lboutounne H, et al. Isolation and in vitro antibacterial activity of astilbin, the bioactive flavanone from the leaves of Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J Ethnopharmacol. 2006;106(2):272–278. https://doi.org/10.1016/j.jep.2006.01.008

Dhanaraj CJ, Nair MS. Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J Coord Chem. 2009;62(24):4018–4028. https://doi.org/10.1080/00958970903191142

Aziz MR. Synthesis and antibacterial study of the ligand type Schiff base derived from amino acid [L-Phenylalanine] and its complexes with Co (II), Ni (II), Cu (II) and Zn (II) ions. 2010;23(2):e2010.

Galini M, Salehi M, Kubicki M, Amiri A, Khaleghian A. Structural characterization and electrochemical studies of Co(II), Zn(II), Ni(II) and Cu(II) Schiff base complexes derived from 2-((E)-(2-methoxyphenylimino)methyl)-4-bromophenol; Evaluation of antioxidant and antibacterial properties. Inorganica Chim Acta. 2017;461:167–173. https://doi.org/10.1016/j.ica.2017.02.001

Ramesh G, Daravath S, Swathi M, Sumalatha V, Shiva Shankar D, Shivaraj. Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentate salen-type Schiff base: Structural characterization, DNA interactions, antioxidant proficiency and biological evaluation. Chem Data Collect. 2020;28:e100434. https://doi.org/10.1016/j.cdc.2020.100434

Packianathan S, Utthra PP, Raman N, Mitu L. Mixed ligand N4O2 type metal(Ii) complexes as metallointercalators: Preliminary investigation of DNA-binding/cleavage and antimicrobial. Inorg Nano-Metal Chem. 2017;47(8):1117–1128. https://doi.org/10.1080/24701556.2017.1284104

Ejidike I, Ajibade P. Synthesis, Characterization and Biological Studies of Metal(II) Complexes of (3E)-3-[(2-{(E)-[1-(2,4-Dihydroxyphenyl) ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one Schiff Base. Molecules. 2015;20(6):9788–9802. https://doi.org/10.3390/molecules20069788

Joseyphus RS, Nair MS. Schiff Base Complexes of Zinc(II). 2008;36(2):93–98.

Claudel M, Schwarte J V., Fromm KM. New Antimicrobial Strategies Based on Metal Complexes. Chemistry (Easton). 2020;2(4):849–899. https://doi.org/10.3390/chemistry2040056

Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents. 2006;27(6):513–517. https://doi.org/10.1016/j.ijantimicag.2006.01.008

Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089. https://doi.org/10.1016/j.apsusc.2010.03.124

Anacona JR, Serrano J. Synthesis and antibacterial activity of metal complexes of cephalothin. J Coord Chem. 2003;56(4):313–320. https://doi.org/10.1080/0095897031000069085

Leelavathy C, Antony SA. Synthesis, spectral characterization and biological activity of metal(II)complexes with 4-aminoantipyrine derivatives. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2013;113(Ii):346–355. https://doi.org/10.1016/j.saa.2013.04.055

Utthra PP, Raman N. Probing the potency of triazole tethered Schiff base complexes and the effect of substituents on their biological attributes. Int J Biol Macromol. 2018;116:194–207. https://doi.org/10.1016/j.ijbiomac.2018.05.009

Mounika K, Pragathi A, Gyanakumari C. Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes. J Sci Res. 2010;2(3):e513. https://doi.org/10.3329/jsr.v2i3.4899

Shi L, Ge HM, Tan SH, et al. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur J Med Chem. 2007;42(4):558-564. https://doi.org/10.1016/j.ejmech.2006.11.010

Keypour H, Shayesteh M, Rezaeivala M, Chalabian F, Elerman Y, Buyukgungor O. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde. J Mol Struct. 2013;1032:62–68. https://doi.org/10.1016/j.molstruc.2012.07.056

Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol Symp Suppl. 2002;92(1):46–54. https://doi.org/10.1046/j.1365-2672.92.5s1.7.x

Yamgar RS, Nivid Y, Nalawade S, Mandewale M, Atram RG, Sawant SS. Novel zinc(II) complexes of heterocyclic ligands as antimicrobial agents: Synthesis, characterisation, and antimicrobial studies. Bioinorg Chem Appl. 2014;2014. https://doi.org/10.1155/2014/276598

Published
2022-12-15
How to Cite
1.
Sarwar A, Nabi N, Naureen B, Bibi Sherino, Ellahi M, Panezai H. Antibacterial Properties of Binuclear Zn(II)-Azomethine Complexes Derived from Diaminodiphenylsulphide Bridged Spacer. Sci Inquiry Rev. [Internet]. 2022Dec.15 [cited 2024Nov.23];6(4):84-107. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/2460
Section
Orignal Article