Synthesis and Applications of 1, 2-Diketones
Abstract
Abstract Views: 348This review article outlines the published data on the synthesis of 1, 2-diketones and its applications. Significantly, 1, 2-diketones play a vital role as an intermediate in the pharmaceutical field. They are mostly used in the production of medicine-related components. The derivatives of 1, 2-diketones are used as photoinitiators in material science. In this review article, efficient procedures and applications are primarily focused on the synthesis of 1, 2-diketones.
Downloads
References
Solanki V, Pare B, Gupta P, Shrivastava R. Int J Green Herbal Chem. 2019;8(3):696–704. https://doi.org/10.24214/IJGHC/GC/8/3 /69604
Gujjarappa R, Vodnala N, Putta V, Reddy VG, Malakar CC. Conversion of alkynes into 1, 2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Letter. 2020;61(10):e151588. https://doi.org/10.1016/j.tetlet.2019.151588
Mosnacˇek J, Weiss RG, Lukacˇ I. Photochemical transformation of benzil carbonyl pendant groups in polystyrene copolymers to benzoyl peroxide carbonyl moieties and the consequences of their thermal and photochemical decomposition. Macromolecules. 2002;35(10):3870–3875. https://doi.org/10.1021/ma0117458
Prill EA, Fabricius N, Hammer BW. Diacetyl and other alpha-dicarbonyl compounds with special reference to the flavor of butter. Res Bulletin. 1939;24(268):e1.
Ellis WB. Books: Ullmann's encyclopedia of industrial Chemistry. J Indust Ecol. 1999;3(2‐3):192–195. https://doi.org/10.1162/jiec.1999.3.2-3.192
Program NT. Chemical information review document for artificial butter flavoring and constituents diacetyl [CAS no. 431-03-8] and acetoin [CAS no. 513-86-0]: Research Triangle Park, NC Integrated Laboratory Systems. Inc Research Triangle Park, NC; 2007.
Wu K-J, Saratale GD, Lo Y-C, et al. Simultaneous production of 2, 3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Biores Technol. 2008;99(17):7966–7970. https://doi.org/10.1016/j.biortech.2008.03.062
Thirumurugan P, Muralidharan D, Perumal PT. The synthesis and photophysical studies of quinoxaline and pyridopyrazine derivatives. Dyes Pigments. 2009;81(3):245–53.
Gao A, Yang F, Li J, Wu Y. Pd/Cu-catalyzed oxidation of alkynes into 1, 2-diketones using DMSO as the oxidant. Tetrahedron. 2012;68(25):4950–4954. https://doi.org/10.1016/j.tet.2012.04.069
Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials. 2003;24(12):2097-2103. https://doi.org/10.1016/S0142-9612(02)00636-1
Zhao Z, Wisnoski DD, Wolkenberg SE, Leister WH, Wang Y, Lindsley CW. General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron letter. 2004;45(25):4873-4876. https://doi.org/10.1016/j.tetlet.2004.04.144
Bhattacharya A, Purohit VC, Beller NR. Benzoin condensation: Monitoring a chemical reaction by high-pressure liquid chromatography. J Chem Educ. 2004;81(7):e1020. https://doi.org/10.1021/ed081p1020
Niesobski P, Martínez IS, Kustosz S, Müller TJ. Sequentially Pd/Cu‐Catalyzed Alkynylation‐Oxidation synthesis of 1, 2‐Diketones and consecutive one‐pot generation of quinoxalines. Eur J Org Chem. 2019;2019(31-32):5214–5218. https://doi.org/10.1002/ejoc.201900783
Cao L, Ding J, Gao M, Wang Z, Li J, Wu A. Novel and direct transformation of methyl ketones or carbinols to primary amides by employing aqueous ammonia. Org Lett. 2009;11(17):3810–3813. https://doi.org/10.1021/ol901250c
Wu M, Miao CX, Wang S, et al. Chiral Bioinspired Non‐Heme Iron Complexes for Enantioselective Epoxidation of α, β‐Unsaturated Ketones. Advan Synth Catal. 2011;353(16):3014–3022. https://doi.org/10.1002/adsc.201100267
Xia X-F, Gu Z, Liu W, et al. Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate. Org Biomolecul Chem. 2014;12(48):9909–9913.
Sheldrake P, Tyrrell E, Mintias S, Shahid I. The Anion of 3-Methyl-2-pyridin-4-yl-1, 3-oxazine. Synth Commun. 2003;33(13):2263–2268. https://doi.org/10.1081/SCC-120021505
Katritzky AR, Lan X, Yang JZ, Denisko OV. Properties and synthetic utility of N-substituted benzotriazoles. Chem Rev. 1998;98(2):409–548.
Kornblum N, Jones WJ, Anderson GJ. A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J Am Chem Soci. 1959;81(15):4113–4114. https://doi.org/10.1021/ja01524a080
Ryabenkova Y, Miedziak PJ, Knight DW, Taylor SH, Hutchings GJ. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron. 2014;70(36):6055–6058. https://doi.org/10.1016/j.tet.2014.02.043
Ambreen N, Kumar R, Wirth T. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: A fast and efficient protocol for alcohol oxidation. Beilstein J Org Chem. 2013;9(1):1437–1442. https://doi.org/10.3762/bjoc.9.162
Voronkov M, Grigor’eva OY, Vlasova N. Acyl iodides in organic synthesis. Reaction of acetyl iodide with thiols. Russian J Org Chem. 2011;47(12):1789–1791. https://doi.org/10.1134/S1070428011120013
Addanki A, Nadendla RR. Synthesis, characterization and antimicrobial activity of di-nitro benzil by conventional and microwave irradiation methods. Ind J Res Pharm Biotechnol. 2017;5(6):371–378.
Zadok E, Rubinraut S, Frolow F, Mazur Y. Reactions of hexamethylbenzene adsorbed on silica gel and Florisil with ozone and with oxygen species formed on microwave discharge of oxygen. J Org Chem. 1985;50(15):2647–2649. https://doi.org/10.1021/jo00215a010
Ando W, Miyazaki H, Ito K, Auchi D. Trioxabicyclo [2, 1, 0] pentane IH photosensitized oxygenation of 2-diazo-3-butanone. Tetrahedron Lett. 1982;23(5):555–556. https://doi.org/10.1016/S0040-4039(00)86887-2
Higley D, Murray R. Oxidation of diazo compounds with singlet oxygen. formation of ozonides. J Am Chem Soc. 1974;96(10):3330–3332. https://doi.org/10.1021/ja00817a600
Chen B, Wu X-F. Palladium-Catalyzed Synthesis of 1, 2-Diketones from Aryl Halides and Organoaluminum Reagents Using tert-Butyl Isocyanide as the CO Source. Org Lett. 2020;22(2):636–641. https://doi.org/10.1021/acs.orglett.9b04414
Hawner C, Müller D, Gremaud L, Felouat A, Woodward S, Alexakis A. Rhodium‐Catalyzed Asymmetric 1, 4‐Addition of Aryl Alanes to Trisubstituted Enones: Binap as an Effective Ligand in the Formation of Quaternary Stereocenters. Angewan Chem Int Edi. 2010;49(42):7769–7772. https://doi.org/10.1002/anie.201003300
Shrestha B, Thapa S, Gurung SK, Pike RA, Giri R. General copper-catalyzed coupling of alkyl-, aryl-, and alkynylaluminum reagents with organohalides. J Org Chem. 2016;81(3):787–802. https://doi.org/10.1021/acs.joc.5b02077
Nagaki A, Ichinari D, Yoshida J-i. Reactions of organolithiums with dialkyl oxalates. A flow microreactor approach to synthesis of functionalized α-keto esters. Chem Commun. 2013;49(31):3242–3244.
Zhou P-J, Li C-K, Zhou S-F, Shoberu A, Zou J-P. Copper-catalyzed TEMPO oxidative cleavage of 1, 3-diketones and β-keto esters for the synthesis of 1, 2-diketones and α-keto esters. Org Biomolecul Chem. 2017;15(12):2629–2637.
Guicheret B, Bertholo Y, Blach P, Raoul Y, Métay E, Lemaire M. A Two‐Step Oxidative Cleavage of 1, 2‐Diol Fatty Esters into Acids or Nitriles by a Dehydrogenation–Oxidative Cleavage Sequence. ChemSusChem. 2018;11(19):3431–3437. https://doi.org/10.1002/cssc.201801640
Baek HS, Lee SJ, Yoo BW, Ko JJ, Kim SH, Kim JH. Indium-mediated reductive coupling of acyl cyanides: a convenient synthesis of 1, 2-diketones. Tetrahedron Lett. 2000;41(42):8097–8099. https://doi.org/10.1016/S0040-4039(00)01411-8
Ruan L, Shi M, Li N, Ding X, Yang F, Tang J. Practical approach for preparation of Unsymmetric Benzils from β-Ketoaldehydes. Org Lett. 2014;16(3):733-735. https://doi.org/10.1021/ol403762e
Dechert-Schmitt A-M, Garnsey MR, Wisniewska HM, et al. Highly modular synthesis of 1, 2-diketones via multicomponent coupling reactions of isocyanides as CO equivalents. ACS Catal. 2019;9(5):4508–4515. https://doi.org/10.1021/acscatal.9b00581
Cao S, Zhong S, Xin L, Wan JP, Wen C. Visible‐Light‐Induced C C Bond Cleavage of Enaminones for the Synthesis of 1, 2‐Diketones and Quinoxalines in Sustainable Medium. ChemCatChem. 2015;7(9):1478–1482. https://doi.org/10.1002/cctc.201500139
Lei S, Chen G, Mai Y, et al. Regioselective copper‐catalyzed oxidative cross‐coupling of Imidazo [1, 2‐a] pyridines with Methyl Ketones: An Efficient Route for Synthesis of 1, 2‐Diketones. Adv Synth Catal. 2016;358(1):67–73. https://doi.org/10.1002/adsc.201500803
Gao Q, Zhang J, Wu X, Liu S, Wu A. Direct regioselective oxidative cross-coupling of indoles with methyl ketones: A novel route to C3-dicarbonylation of indoles. Org Lett. 2015;17(1):134–137. https://doi.org/10.1021/ol503366r
Shaik SP, Sultana F, Ravikumar A, Sunkari S, Alarifi A, Kamal A. Regioselective oxidative cross-coupling of benzo [d] imidazo [2, 1-b] thiazoles with styrenes: a novel route to C3-dicarbonylation. Org Biomol Chem. 2017;15(36):7696–704. https://doi.org/10.1039/C7OB01778B
Guo T, Fu X-H, Zhang M, Li Y-L, Ma Y-C. Catalyst-free direct cross-dehydrogenative coupling of imidazoheterocycles with glyoxal hydrates: an efficient approach to 1, 2-diketones. Org Biomol Chem. 2019;17(12):3150–3158. https://doi.org/10.1039/C9OB00095J
Liang H, Liu H, Jiang X. Research on the Conversion of α-Hydroxy Ketones into 1, 2-Diketones and subsequent transformations. Synlett. 2016;27(20):2774–2782. https://doi.org/10.1055/s-0036-1588085
Yuan L-Z, Hamze A, Alami M, Provot O. Synthesis of substituted Benzils from Diarylalkyne oxidation. Synthesis. 2017;49(3):504–525. https://doi.org/10.1055/s-0036-1588608
Yasuhara A, Tanaka Y, Hengel M, Shibamoto T. Gas chromatographic investigation of acrylamide formation in browning model systems. J Agri Food Chem. 2003;51(14):3999–4003. https://doi.org/10.1021/jf0300947
Gobert J, Glomb MA. Degradation of glucose: Reinvestigation of reactive α-dicarbonyl compounds. J Agri Food Chem. 2009;57(18):8591–8597. https://doi.org/10.1021/jf9019085
Wang A, Jiang H, Li X. Palladium-Catalyzed carbonation–Diketonization of terminal aromatic alkenes via Carbon–Nitrogen bond cleavage for the synthesis of 1, 2-Diketones. J Org Chem. 2011;76(16):6958–6961. https://doi.org/10.1021/jo201029p
Nakayama H, Itoh A. Facile synthesis of phenacyl iodides from styrenes under visible light irradiation with fluorescent lamps. Tetrahedron Lett. 2007;48(7):1131–1133. https://doi.org/10.1016/j.tetlet.2006.12.065
Miyamoto S, Martinez GR, Medeiros MH, Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc. 2003;125(20):6172–6179. https://doi.org/10.1021/ja029115o
Lee JC, Park H-J, Park JY. Rapid microwave-promoted solvent-free oxidation of α-methylene ketones to α-diketones. Tetrahedron Lett. 2002;43(32):5661–5663. https://doi.org/10.1016/S0040-4039(02)01130-9
Takada Y, Nomura K, Matsubara S. Preparation of a cycloheptane ring from a 1, 2-Diketone with High Stereoselectivity. Org Lett. 2010;12(22):5204–5205. https://doi.org/10.1021/ol102237b
Stuzhin P, Ercolani C. The porphyrin handbook. Academic Press; 2003.
Pia Donzello M, Viola E, Tomachinskaya LA, et al. Synthesis and properties of styryl-substituted tetrapyrazinoporphyrazines [St8PyzPzM], M= 2NaI, MgII (H2O) and ZnII. J Porph Phthalo. 2010;14(9):793–803. https://doi.org/10.1142/S1088424610002677
Renouard T, Grätzel M. Functionalized tetradentate ligands for Ru-sensitized solar cells. Tetrahedron. 2001;57(38):8145–8150. https://doi.org/10.1016/S0040-4020(01)00801-8
Ukai K, Oshima K, Matsubara S. Preparation of cyclopropanediol: Novel [2+ 1] cycloaddition reaction of bis (iodozincio) methane with 1, 2-diketones. J Am Chem Soc. 2000;122(48):12047–12048. https://doi.org/10.1021/ja003360v
Zhang J, Wang S, Lalevée J, et al. 1, 2‐Diketones as photoinitiators of both cationic and free‐radical photopolymerization under UV (392 nm) or Blue (455 nm) LEDs. J Polymer Sci. 2020;58(6):792–802. https://doi.org/10.1002/pol.20190157
Zhao Z, Leister WH, Strauss KA, Wisnoski DD, Lindsley CW. Broadening the scope of 1, 2, 4-triazine synthesis by the application of microwave technology. Tetrahedron Lett. 2003;44(6):1123–1127. https://doi.org/10.1016/S0040-4039(02)02845-9
Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Efficient synthesis of imidazoles from aldehydes and 1, 2-diketones using microwave irradiation. Organic Lett. 2004;6(9):1453–1456. https://doi.org/10.1021/ol049682b
Cui B, Zheng BL, He K, Zheng QY. Imidazole alkaloids from lepidium m eyenii. J Nat Prod. 2003;66(8):1101–1103. https://doi.org/10.1021/np030031i
Harper JL, Smith RA, Bedford JJ, Leader JP. Synthesis, acidity and 19F NMR characteristics of imidazoles bearing 1-fluorinated substituents with potential application as probes for intracellular pH determination. Tetrahedron. 1997;53(24):8211–8224. https://doi.org/10.1016/S0040-4020(97)00487-0
Wu L, Jing X, Zhu H, Liu Y, Yan C. One-pot synthesis of polysubstituted imidazoles from arylaldehydes in water catalyzed by NHC using microwave irradiation. J Chilean Chem Soc. 2012;57(3):1204–1207.
Wen W, Zeng Y, Peng L-Y, Fu L-N, Guo Q-X. Asymmetric Synthesis of α-Amino Ketones by Brønsted Acid Catalysis. Org Lett. 2015;17(15):3922–3925. https://doi.org/10.1021/acs.orglett.5b01972
Antelo Miguez JM, Adrio LA, Sousa-Pedrares A, Vila JM, Hii KK. A practical and general synthesis of unsymmetrical terphenyls. J Org Chem. 2007;72(20):7771–7774. https://doi.org/10.1021/jo701308b
Juni E, Heym GA. A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol and diacetyl II.: The synthesis of diacetylmethylcarbinol from diacetyl, a new diphosphothiamin catalyzed reaction1. J Bacteriol. 1956;72(6):e746.
Sessler JL, Cho D-G. The benzil rearrangement reaction: trapping of a hitherto minor product and its application to the development of a selective cyanide anion indicator. Org Lett. 2008;10(1):73–75. https://doi.org/10.1021/ol7027306
He X, Hu S, Liu K, Guo Y, Xu J, Shao S. Oxidized bis (indolyl) methane: A simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode. Org Lett. 2006;8(2):333–336. https://doi.org/10.1021/ol052770r
Ogata Y, Yamashita M. Kinetics of the reaction of trimethyl phosphite with substituted benzils. Tetrahedron. 1971;27(13):2725–2735. https://doi.org/10.1016/S0040-4020(01)98063-9
Vu ND, Chavallard R, De Dios Miguel T, Duguet N, Lemaire M. Organocatalytic Cleavage of Fatty 1, 2-Diketones to Esters. ACS Sustain Chem Eng. 2019;7(16):13865–13872. https://doi.org/10.1021/acssuschemeng.9b02026
Liu R, Yang S, Chen Z, Kong X, Ding H, Fang X. Lewis-Acid-Catalyzed asymmetric alkynylation of Alkynyl 1, 2-Diketones: Controllable formation of 3 (2 H)-Furanones and α-Hydroxy Ketones. Org Lett. 2020;22(17):6948–6953. https://doi.org/10.1021/acs.orglett.0c02505
Sakhare PR, Subramanian P, Kaliappan KP. Copper Catalyzed Oxidative C–C Bond Cleavage of 1, 2-Diketones: A divergent approach to 1, 8-Naphthalimides, Biphenyl-2, 2′-dicarboxamides, and N-Heterocyclic Amides. J Org Chem. 2019;84(4):2112–2125. https://doi.org/10.1021/acs.joc.8b03114
Copyright (c) 2022 Syeda Shaista Gillani, Isma attique, Tanzeela Mehboob
This work is licensed under a Creative Commons Attribution 4.0 International License.