Synthesis and Characterization of Highly Crystalline Strontium Metal-Organic Frameworks using 1,4-Benzenedicarboxylic Acid (BDC) Organic Linker

  • Rashid Mehmood Minhaj University, Lahore, Pakistan
  • Ezaz Haider Gilani Minhaj University, Lahore, Pakistan; University of Engineering & Technology, Lahore, Pakistan
  • Muhammad Ahmed Minhaj University, Lahore, Pakistan
  • Momina Feroz Minhaj University, Lahore, Pakistan
  • Muhammad Tayyab Saeed University of Engineering & Technology, Lahore, Pakistan
Keywords: strontium metal, 1,4-benzendicarboxylic acid (BDC), Metal-organic frameworks, Ligand, Organic Linker

Abstract

Abstract Views: 0

In this work, strontium Metal Organic Framework (MOF) using 1,4-benzenedicarboxylic acid (BDC) as the organic linker has been synthesized and characterized. Several industries, such as catalysis, gas storage, and medicinal delivery, have shown interest in strontium metal-organic frameworks (MOFs). Synthesis involves a solvothermal procedure where a controlled reaction environment in which strontium ions are coordinated with BDC ligands, leads to the creation of porous crystalline MOF structures. Various analytical methods were used to characterize the synthesized Sr-MOF. These methods included X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR), and electron dispersive X-ray spectroscopy (EDX). Strontium metal-organic frameworks with different structural characteristics have been successfully formed, as evidenced by the characterization results. Also, learning about the solvents employed for reaction requirements. By expanding our understanding of Sr-MOF materials and their properties, this study paves the way for future investigations in materials science and chemistry.

Downloads

Download data is not yet available.

References

Prinz N, Strübbe S, Bauer M, Zobel M. Structural transitions during Ni nanoparticle formation by decomposition of a Ni-containing metal–organic framework using in situ total scattering. New J Chem. 2023;47(24):11623–11635. https://doi.org/10.1039/D3NJ00493G

Devi B, Kurungot S. Conductive metal-organic frameworks for zinc-air battery application: design principles, recent trends and prospects. J Mater Chem A. 2024;12(5):2605–2619 https://doi.org/10.1039/D3TA03753C

Adil M, Olabi AG, Abdelkareem MA, et al. In-situ grown metal-organic framework derived CoS-MXene pseudocapacitive asymmetric supercapacitors. J Energy Storage. 2023;60:e106537. https://doi.org/10.1016/j.est.2022.106537

Saeed G, Alam A, Bandyopadhyay P, Jeong S, Kim K, Lim S. Metal-organic framework-derived (Mn-1) CoxSy@(Ni–Cu) OHs marigold flower-like core@ shell as cathode and (Mn–Fe10) Sx@ graphene–foam as anode materials for ultra-high energy-density asymmetric supercapacitor. Mater Today Chem. 2022;23:e100758. https://doi.org/10.1016/j.mtchem.2021.100758

Ghatak A, Shanker GS, Sappati S, Liberman I, Shimoni R, Hod I. Pendant proton‐relays systematically tune the rate and selectivity of electrocatalytic ammonia generation in a fe‐porphyrin based metal‐organic framework. Angew Chem, Int Ed. 2024:e202407667. https://doi.org/10.1002/anie.202407667

Thakur AK, Majumder M, Patole SP, Zaghib K, Reddy M. Metal–organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Mater Adv. 2021;2(8):2457–2482. https://doi.org/10.1039/D0MA01019G

Feng D, Zhou L, White TJ, Cheetham AK, Ma T, Wei F. Nanoengineering metal–organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 2023;15(1):e203. https://doi.org/10.1007/s40820-023-01169-4

Kalaj M, Bentz KC, Ayala Jr S, et al. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem Rev. 2020;120(16):8267–8302. https://doi.org/10.1021/acs.chemrev.9b00575

Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J. Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A. 2020;8(16):7569–7587. https://doi.org/10.1039/D0TA00406E

Nabipour H, Mozafari M, Hu Y. BioMOFs. In: Mozafari M, ed. Metal-Organic Frameworks for Biomedical Applications. Elsevier; 2020:321–345. https://doi.org/10.1016/B978-0-12-816984-1.00017-2

Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron. 2008;64(36):8553–8557. https://doi.org/10.1016/j.tet.2008.06.036

Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem. 2019;118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):e1230444. https://doi.org/10.1126/science.1230444

Pathak I, Acharya D, Chhetri K, et al. Ti 3 C 2 T x MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. J Mater Chem A. 2023;11(10):5001–5014. https://doi.org/10.1039/D2TA09726E

Wei R, Liu X, Zhou Z, et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci Adv. 2022;8(7):eabm6741. https://doi.org/10.1126/sciadv.abm6741

Tsai M-D, Chen Y-L, Chang J-W, Yang S-C, Kung C-W. Sulfonate-functionalized two-dimensional metal–organic framework as a “dispersant” for polyaniline to boost its electrochemical capacitive performance. ACS Appl Energy Mater. 2023;6(21):11268–11277. https://doi.org/10.1021/acsaem.3c02155

Li W. Metal–organic framework membranes: production, modification, and applications. Prog Mater Sci. 2019;100:21–63. https://doi.org/10.1016/j.pmatsci.2018.09.003

Bai S, Liu X, Zhu K, Wu S, Zhou H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy. 2016;1(7):1–6. https://doi.org/10.1038/nenergy.2016.94

Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–1459. https://doi.org/10.1039/B807080F

Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB. A review on contemporary metal–organic framework materials. Inorg Chimica Acta. 2016;446:61–74. https://doi.org/10.1016/j.ica.2016.02.062

Yin LL, Kong XY, Zhang Y, Ji YQ. Facile synthesis of the magnetic metal organic framework Fe3O4@ UiO-66-NH2 for separation of strontium. Biomed Environ Sci. 2018;31(6):483–488. https://doi.org/10.1016/j.ica.2016.02.062

Petit C, Burress J, Bandosz TJ. The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon. 2011;49(2):563–572. https://doi.org/10.1016/j.carbon.2010.09.059

Laurier KG, Vermoortele F, Ameloot R, De Vos DE, Hofkens J, Roeffaers MB. Iron (III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc. 2013;135(39):14488–14491. https://doi.org/10.1021/ja405086e

Hu X, Hu H, Li C, et al. Cobalt-based metal organic framework with superior lithium anodic performance. J Solid State Chem. 2016;242:71–76. https://doi.org/10.1016/j.jssc.2016.07.021

Banerjee D, Kim SJ, Parise JB. Lithium based metal− organic framework with exceptional stability. Cryst Growth Des. 2009;9(5):2500–2503. https://doi.org/10.1021/cg8014157

Hauptvogel IM, Biedermann R, Klein N, et al. Flexible and hydrophobic Zn-based metal–organic framework. Inorg Chem. 2011;50(17):8367–8374. https://doi.org/10.1021/ic200937u

Tavakolinia F, Yousefi M, Afghahi SSS, Baghshahi S, Samadi S. Synthesis of novel hard/soft ferrite composites particles with improved magnetic properties and exchange coupling. Proc Appl Ceram. 2018;12(3):248–256. https://doi.org/10.2298/PAC1803248T

Published
2025-09-29
How to Cite
1.
Mehmood R, Gilani EH, Ahmed M, Feroz M, Saeed MT. Synthesis and Characterization of Highly Crystalline Strontium Metal-Organic Frameworks using 1,4-Benzenedicarboxylic Acid (BDC) Organic Linker. Sci Inquiry Rev [Internet]. 2025Sep.29 [cited 2025Oct.6];9(1):1-17. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/5285
Section
Chemistry