A Comprehensive Review on Supplementary Cementitious Materials – Progress, Environmental Impact, and Future Sustainability Challenges
Abstract
Abstract Views: 0
Cement is widely used material in construction industry. High performance concrete arranges extensive supplementary materials and Portland cement which detect the use in construction industry. This study investigates different supplementary cementitious materials, when these supplementary materials are mixed with cement, they increase their compressive as well as mechanical strength. Materials like metakaolin, blast furnace slag, silica fume, laterites, fly ash, rice husk ash, Nano-materials, blended cement and sugar-cane bagasse. In fresh concrete properties the mechanical strength estimates development of elastic modulus, strain due to shrinkage, in compressive strength and flexural strength. Conventional concrete like blast furnace slag and fly ashes have been used for many decades assemble the impacts on cement hydration and concrete properties. Supplementary cementitious materials are the key components of cement andthe replacement of cement with other supplementary materials is a widelyadopted industrial process and study the effects of CO2 emission and absorption for precast cement production and their environmental impacts. The research helps to summarize the progress and availability of different supplementary materials, their environmental impacts on cement performance and durability and some challenges which faced by construction industry and achievement of sustainable supplementary material.
Downloads
References
Abdel-Rahman HA, Younes MM. Performance of irradiated blended cement paste composites containing ceramic waste powder towards sulfates, chlorides, and seawater attack. J Vinyl Addit Technol. 2020;26(1):24-34. doi:10.1002/vnl.21743
Babu KG, Prakash PS. Efficiency of silica fume in concrete. Cem Concr Res. 1995;25(6):1273-1283. doi:10.1016/0008-8846(95)00119-1
Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81(2):457-462. doi:10.1007/s10973-005-0975-2
Bahurudeen A, Kanraj D, Dev VG, Santhanam M. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem Concr Compos. 2015;59:77-88. doi:10.1016/j.cemconcomp.2015.03.004
Bautista-Gutierrez KP, Herrera-May AL, Santamaría-López JM, Honorato-Moreno A, Zamora-Castro SA. Recent progress in nanomaterials for modern concrete infrastructure: advantages and challenges. Materials (Basel). 2019;12(21):3548. doi:10.3390/ma12213548
Bhanja S, Sengupta B. Investigations on the compressive strength of silica fume concrete using statistical methods. Cem Concr Res. 2002;32(9):1391-1394. doi:10.1016/S0008-8846(02)00828-4
Bhanja S, Sengupta B. Influence of silica fume on the tensile strength of concrete. Cem Concr Res. 2005;35(4):743-747. doi:10.1016/j.cemconres.2004.05.024
Boscaro F, Palacios M, Flatt RJ. Formulation of low clinker blended cements and concrete with enhanced fresh and hardened properties. Cem Concr Res. 2021;150:106605. doi:10.1016/j.cemconres.2021.106605
Bredy P, Chabannet M, Pera J. Microstructure and porosity of metakaolin blended cements. MRS Online Proc Libr. 1988;136:275-280. doi:10.1557/PROC-136-275
Brown ET, Bourlès DL, Colin F, Sanfo Z, Raisbeck GM, Yiou F. The development of iron crust lateritic systems in Burkina Faso, West Africa examined with in-situ-produced cosmogenic nuclides. Earth Planet Sci Lett. 1994;124(1-4):19-33. doi:10.1016/0012-821X(94)00066-X
Buenfeld NR, Newman JB. The permeability of concrete in a marine environment. Mag Concr Res. 1984;36(127):67-80. doi:10.1680/macr.1984.36.127.67
Bukhari SA, Chaudhry AH, Iqbal MN, Siddiqui RH. Performance of cement containing laterite as supplementary cementing material. J Chem Chem Eng. 2013;62(3):65-70.
Cadrin SX, Karr LA, Mariani S. Stock identification methods: an overview. In: Stock Identification Methods. Elsevier; 2014:1-5. doi:10.1016/B978-0-12-397003-9.00001-5
Çakır Ö. Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Constr Build Mater. 2014;68:17-25. doi:10.1016/j.conbuildmat.2014.06.032
Calvin WD. Thermal drying: turning bagasse from a problem to a profit center. IPPTA. 1996;8:61-68.
Camargo-Pérez NR, Abellán-García J, Fuentes L. Use of rice husk ash as a supplementary cementitious material in concrete mix for road pavements. J Mater Res Technol. 2023;25:6167-6182. doi:10.1016/j.jmrt.2023.03.260
Cid-Falceto J, Mazarrón FR, Cañas I. Assessment of compressed earth blocks made in Spain: international durability tests. Constr Build Mater. 2012;37:738-745. doi:10.1016/j.conbuildmat.2012.04.013
Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR. Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr Build Mater. 2012;29:641-646. doi:10.1016/j.conbuildmat.2011.07.029
Bjegovic D, Stirmer N, Serdar M. Durability properties of concrete improved by extremely fine cementitious materials. Mater Corros. 2012;63(12):1087-1096. doi:10.1002/maco.201206664
de Sande VT, Sadique M, Pineda P, et al. Potential use of sugar cane bagasse ash as sand replacement for durable concrete. J Build Eng. 2021;39:102277. doi:10.1016/j.jobe.2021.102277
Diamond SA, Kennedy AJ, Melby NL, et al. Assessment of the potential hazard of nano-scale TiO2 in photocatalytic cement: application of a tiered assessment framework. NanoImpact. 2017;8:11-19. doi:10.1016/j.impact.2017.06.001
Dimoudi A, Tompa C. Energy and environmental indicators related to construction of office buildings. Resour Conserv Recycl. 2008;53(1-2):86-95. doi:10.1016/j.resconrec.2008.09.008
Farabi H, Ramroop I. Bagasse: controlling pollution from a free fuel. Chem Eng World. 1994;29(3):51-56.
Galán-Marín C, Rivera-Gómez C, Petric J. Clay-based composite stabilized with natural polymer and fibre. Constr Build Mater. 2010;24(8):1462-1468. doi:10.1016/j.conbuildmat.2010.01.008
Ganesan K, Rajagopal K, Thangavel K. Evaluation of bagasse ash as supplementary cementitious material. Cem Concr Compos. 2007;29(6):515-524. doi:10.1016/j.cemconcomp.2007.03.001
Goel G, Sachdeva P, Chaudhary AK, Singh Y. The use of nanomaterials in concrete: a review. Materials Today: Proc. 2022;69:365-371. doi:10.1016/j.matpr.2022.01.060
Goldman A, Bentur A. The influence of microfillers on enhancement of concrete strength. Cem Concr Res. 1993;23(4):962-972. doi:10.1016/0008-8846(93)90161-J
Gopalan MK. Sorptivity of fly ash concretes. Cem Concr Res. 1996;26(8):1189-1197. doi:10.1016/0008-8846(96)00114-1
Hall C. Water movement in porous building materials—IV. The initial surface absorption and the sorptivity. Build Environ. 1981;16(3):201-207. doi:10.1016/0360-1323(81)90023-2
Hall C. Water sorptivity of mortars and concretes: a review. Mag Concr Res. 1989;41(147):51-61. doi:10.1680/macr.1989.41.147.51
Halstead WJ. Use of fly ash in concrete. NCHRP Synth Highw Pract. 1986;(127):1-45.
Ho DS, Lewis RK. The water sorptivity of concretes: the influence of constituents under continuous curing. Durab Build Mater. 1987;4(3):241-252. doi:10.1016/0167-3890(87)90015-8
Hussien NT, Oan AF. The use of sugarcane wastes in concrete. J Eng Appl Sci. 2022;69(1):31. doi:10.1186/s44147-022-00051-w
Indukuri CSR, Nerella R, Madduru SRC. Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Constr Build Mater. 2019;229:116863. doi:10.1016/j.conbuildmat.2019.116863
John N. Strength properties of metakaolin admixed concrete. Int J Sci Res Publ. 2013;3(6):1-7.
Justice JM, Kurtis KE. Influence of metakaolin surface area on properties of cement-based materials. J Mater Civ Eng. 2007;19(9):762-771. doi:10.1061/(ASCE)0899-1561(2007)19:9(762)
Jose A, Kasthurba AK. Laterite soil-cement blocks modified using natural rubber latex: assessment of its properties and performance. Constr Build Mater. 2021;273:121991. doi:10.1016/j.conbuildmat.2020.121991
Kaze CR, Lecomte-Nana GL, Kamseu E, et al. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: a comparative study. Cem Concr Res. 2021;140:106320. doi:10.1016/j.cemconres.2020.106320
Kaze RC, à Moungam LB, Djouka MF, et al. The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Appl Clay Sci. 2017;138:48-62. doi:10.1016/j.clay.2016.12.020
Kazemi R, Gholampour A. Evaluating the rapid chloride permeability of self-compacting concrete containing fly ash and silica fume exposed to different temperatures: an artificial intelligence framework. Constr Build Mater. 2023;409:133835. doi:10.1016/j.conbuildmat.2023.133835
Kelham S. A water absorption test for concrete. Mag Concr Res. 1988;40(143):106-110. doi:10.1680/macr.1988.40.143.106
Khalil MJ, Aslam M, Ahmad S. Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete–a review. Constr Build Mater. 2021;270:121371. doi:10.1016/j.conbuildmat.2020.121371
