On Irregularity Indices for Fractal and Cayley-Tree Type Dendrimers
Abstract
Abstract Views: 0
Let be a simple connected (molecular) graph with and as the vertex and edge sets respectively. A graph is supposed to be regular if all vertices have equal degree, otherwise irregular. The fractal and cayley trees are irregular acyclic and connected graphs which are widely used to develop signal amplifiers for biosensors, cellular imaging and genetic engineering. The topological index (TI) serves as a mathematical function for determining numerical values of molecular graphs, aiding in the prediction of diverse physical, chemical, biological, thermodynamic, and structural properties. An irregular index, a specific type of TI, quantifies the irregularity of atomic bonding within chemical compounds represented by the graphs under analysis. This study focuses on calculating the irregularity indices for fractal dendrimers and Cayley tree-type dendrimers. A comparative analysis of the obtained indices is conducted using their numerical values and 3D visualizations. Lastly, the most efficient and consistent irregularity indices for fractal and Cayley tree dendrimers are identified and discussed.
Keywords:Topological descriptors; Irregularity indices, Fractal dendrimers and Cayley tree dendrimers.
MSC (2020) Subject Classification: 05C09; 05C92
Downloads
References
Basak SC, Magnuson VR, Niemi GJ, Regal RR, Veith GD. Topological indices: their nature, mutual relatedness and applications. Math Model. 1987;8(1):5-300. https://doi.org/10.1016/0270-0255(87)90594-X
Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc. 1947;69(1):17-20. https://doi.org/10.1021/ja01193a005
Gutman I, Trinajstić N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem Phys Lett. 1972;17(4):528-535. https://doi.org/10.1016/0009-2614(72)85099-1
Réti T, Sharafdini R, Dregelyi-Kiss A, Haghbin H. Graph irregularity indices used as molecular descriptors in QSPR studies. MATCH Commun Math Comput Chem. 2018;79:24-509.
Estrada E. Randic index, irregularity and complex biomolecular networks. Acta Chim Slov. 2010;57:597-603.
Bell FK. A note on the irregularity of graphs. Linear Algebra Appl. 1992;161:45-54. https://doi.org/10.1016/0024-3795(92)90004-T
Gutman I. Irregularity of molecular graphs. Kragujev J Sci. 2016;38:71-78.
Majcher Z, Michael J. Highly irregular graphs with extreme numbers of edges. Discret Math. 1997;164:237-242. https://doi.org/10.1016/S0012-365X(96)00056-8
Liu F, Zhang Z, Meng J. The size of maximally irregular graphs and maximally irregular triangle-free graphs. Graphs Comb. 2014;30:699-705. https://doi.org/10.1007/s00373-013-1304-1
Abdo H, Brandt S, Dimitrov D. The total irregularity of a graph. Discrete Math Theor Comput Sci. 2014;16:201-206. https://doi.org/10.46298/dmtcs.1263
Abdo H, Dimitrov D. The total irregularity of graphs under graph operations. Miskolc Math Notes. 2014;15:3-17. https://doi.org/10.18514/MMN.2014.593
Abdo H, Dimitrov D. The irregularity of graphs under graph operations. Discuss Math Graph Theory. 2014;34(2):263-278. https://doi.org/10.7151/dmgt.1733
Iqbal Z, Aslam A, Ishaq M, Aamir M. Characteristic study of irregularity measures of some nanotubes. Canad J Phy. 2019;97(10):1125-1132. https://doi.org/10.1139/cjp-2018-0619
Gao W, Aamir M, Iqbal Z, Ishaq M, Aslam A. On irregularity measures of some dendrimer structures. Mathematics. 2019;7(3):e271. https://doi.org/10.3390/math7030271
Yang B, Munir M, Rafique S, Ahmad H, Liu JB. Computational analysis of imbalance-based irregularity indices of boron nanotubes. Processes. 2019;7(10):e678. https://doi.org/10.3390/pr7100678
Dimitrov D, Rti T. Graphs with equal irregularity indices. Acta Polytech Hung. 2014;11(4):41-57.
Horoldagva B, Buyantogtokh L, Dorjsembe S, Gutman I. Maximum size of maximally irregular graphs. MATCH Commun Math Comput Chem. 2016;76(1):81-98.
Albertson MO. The irregularity of a graph. Ars Combin. 1997;46(1):219-225.
Vukićević D, Graovac A. Valence connectivity versus Randić, Zagreb and modified Zagreb index: a linear algorithm to check discriminative properties of indices in acyclic molecular graphs. Croat Chem Acta. 2004;77(3):501-508.
Gutman I. Topological indices and irregularity measures. J Bull. 2018;8:469-475. https://doi.org/10.7251/BIMVI1803469G
Imran M, Baig AQ, Khalid W. On topological indices of fractal and cayley tree type dendrimers. Discrete Dynam Nat Soc. 2018;2018(1):e2684984. https://doi.org/10.1155/2018/2684984
Manimaran A. Topological analysis of fractal binary and ternary trees. Contemp Math. 2025;6(1):715-729. https://doi.org/10.37256/cm.6120255952
Hamanaka S, Iliasov AA, Neupert T, Bzdušek T, Yoshida T. Multifractal statistics of non-Hermitian skin effect on the Cayley tree. Phys Rev B. 2025;111(7):e075162. https://doi.org/10.1103/PhysRevB.111.075162
Pannipitiya DN. A Dynamical Approach to The Potts Model on Cayley Tree. Dissertation. Purdue University; 2024.
Bagley RL, Torvik PJ. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 1985;23(6):918-925. https://doi.org/10.2514/3.9007
Baillie RT. Long memory processes and fractional integration in econometrics. J Econom. 1996;73(1):5-59. https://doi.org/10.1016/0304-4076(95)01732-1
Talib I, Belgacem FBM, Asif NA, Khalil H. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions. AIP Conf Proc. 2017;1798(1):e020024. https://doi.org/10.1063/1.4972616
Copyright (c) 2025 Dr Ibraheem, Dr Muhammad Javaid

This work is licensed under a Creative Commons Attribution 4.0 International License.
