Stretching a Surface in a Rotating Fluid through Porous Medium
Abstract
Abstract Views: 0
This article is related to the study of rotating flow of a viscous fluid originated due to the stretching of the surface over which the fluid exists. The main idea focuses on the effects of slip velocity and the porosity of the medium. The Homotopy Analysis Method (HAM) is utilized to get analytical expressions of the flow variables. The similarity transformations are used to convert the involved partial differential equations into ordinary differential equations. The effect of the porosity and slip velocity parameters are presented through graphs. It is found that the parameter of porosity increases the similarity velocity profiles of the rotating fluid.
Downloads
References
M.E Erdogan, Flow due to eccentric rotating porous disk and fluid at infinity, Trans. ASME J. Appl. Mech. 43, 203–204 (1976).
S.N.Murthy and R.K.P.Ram,MHD flow and heat transfer due to eccentric rotation of a porous disk and fluid at infinity, Int. J. Eng.Sci.16, 943–949(1978).
A.M.Siddiqui, T.Haroon, T.Hayat and S.Asghar, Unsteady MHD flow of a non Newtonion fluid due to ecentic rotation of a porous disk and fluid at infinity, Acta Mechanica 147, 99–109 (2001).
M.Navier, Memorie sur less lois du movement des fluid, Memories de L’Accademie des science de L’ Institute France 6 (1923) 389–440
M. Saqib, I. Khan and S. Shafie. Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium. Chaos, Solitons & Fractals 116(2018): 9-85
Saqib, M., Khan, I. & Shafie, S. Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv Differ Equ
, 52 (2019). https://doi.org/10.1186/s13662-019-1988-5
A. Hussnan, I. Khan and Z.Dalleh. Slip effects on unsteady free convective heat and mass transfer flow with newtonian heating. Thermal Sciencer 20(6) 2016: 1939-1952
M. Saqib, Ilyas Khan, Yu-Ming Chu , A. Qushairi, S. Shafie and K. S. Nisar. Multiple fractional solutions for magnetic bio-nanofluid using oldroyd-b model in a porous medium with ramped wall heating and variable velocity. Appl. Sci. 2020, 10, 3886; doi:10.3390/app10113886
M. Saqib, S. Shafie, I Khan , Yu-Ming Chu and K. S. Nisar. Symmetric mhd channel flow of nonlocal fractional model of btf containing hybrid nanoparticles. Symmetry 2020, 12, 663; doi:10.3390/sym12040663
M. Saqib , A. R. M. Kasim, N. F. Mohammad, D. L. C. Ching and S. Shafie. Application of Fractional Derivative Without Singular and Local Kernel to Enhanced Heat Transfer in CNTs Nanofluid Over an Inclined Plate. Symmetry 2020, 12, 768; doi:10.3390/sym12050768
M. Saqib1, H. Hanif, T. Abdeljawad, I. Khan , S. Shafie and K. S. Nisar. Heat transfer in MHD flow of Maxwell fluid via fractional cattaneo-friedrich model: a finite difference approach.
CMC, vol.65, no.3, pp.1959-1973, 2020
A. Hussanan1, M. Z. Salleh, I. Khan and S.Shafie. Analytical solution for suction and injection flow of a viscoplastic Casson fluid past a stretching surface in the presence of viscous
dissipation. Neural Comput & Applic (2018) 29:1507–1515
A. Hussanan, I. Khan, M. R. Gorji and W. A. Khan. CNTS-water–based nanofluid over a stretching sheet. BioNanoScience (2019) 9:21–29
A. Hussanan, M. Z. Salleh, H. T. Alkasasbeh and I. Khan. MHD flow and heat transfer in a Casson fluid over a nonlinearly stretching sheet with newtonian heating. Heat Transfer Research, 49(12), 1185-1198, 2018
N. A. Sheikh, D. L. Chuan Ching, I. Khan, D. Kumar, K. S. Nisar. A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alexandria Engineering Journal (2020) 59(5): 2865-2876
F. Ali, N. A. Sheikh, I. Khan, M. Saqib. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model. Journal of Magnetism and Magnetic Materials (2017) 423:327-336
N. A. Sheikh, D. L. Chuan Ching, I. Khan, H. Sakidin. Generalization of the convective flow of Brinkman-type fluid using Fourier’s and Fick’s Laws: Exact solutions and entropy generation", Mathematical Problems in Engineering, vol. 2020, Article ID 8896555, 13 pages, 2020. https://doi.org/10.1155/2020/8896555
S.J.Liao, Beyond perturbation: Introduction to homotopy analysis method, Boca Raton:Chapman and Hall/CRC Press; 2003.
S.J.Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004) 499–513.
S.J.Liao and A. Campo, Analytic solution of the temperature distribution in Blasius viscous flow problems, J. Fluid Mech. 453 (2002), 411–425.
T. Hyat , M. Khan and M. Ayub, Couette and Poiseuillie flows of an Oldroyed 6–constant fluid with magnetic field, J. Math. Anal. An appl. 289(2004) 225–244.
C. Yang and S. J. Liao, On the explicit purely analytic solution of Von Karman swirling viscous flow, Comm. Numer. Simm. 11 (2006) 83–93.
L. J. Crane, Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970).
J. F. Brady and A. Acrivos, Steady flow in a channel or tube with an accelerating surface velocity, An exact solution to the Navier-Stokes equations with reverse flow. J. Fluid Mech. 112,127–150(1981).
C. Y. Wang, The three dimensional flow due to a stretching surface. Phys. Fluids 27, 1915–1917 (1984).
C. Y. Wang, Stretching a surface in a rotating fluid. ZAMP.39(1988), 177–185.
Copyright (c) 2025 Dr. Sajid Hussain, Shafqat Ali, Shahzad Shabbir, Ayesha Mahmood, Samer Perveen, Muhammad Riaz

This work is licensed under a Creative Commons Attribution 4.0 International License.
