Stretching a Surface in a Rotating Fluid through Porous Medium
Abstract
Abstract Views: 0
This article is related to the study of rotating flow of a viscous fluid originated due to the stretching of the surface over which the fluid exists. The main idea focuses on the effects of slip velocity and the porosity of the medium. The Homotopy Analysis Method (HAM) is utilized to get analytical expressions of the flow variables. The similarity transformations are used to convert the involved partial differential equations into ordinary differential equations. The effect of the porosity and slip velocity parameters are presented through graphs. It is found that the parameter of porosity increases the similarity velocity profiles of the rotating fluid.
Downloads
References
Erdogan ME. Flow due to eccentric rotating a porous disk and a fluid at infinity. J Appl Mech. 1976;43(2):203-204. https://doi.org/10.1115/1.3423808
Murthy SN, Ram RKP. MHD flow and heat transfer due to eccentric rotations of a porous disc and a fluid at infinity. Int J Eng Sci. 1978;16(12):943-949. https://doi.org/10.1016/0020-7225(78)90053-8
Siddiqui AM, Haroon T, Hayat T, Asghar S. Unsteady MHD flow of a non-newtonian fluid due to eccentric rotations of a porous disk and a fluid at infinity. Acta Mechanica. 2001;147(1-4):99-109. https://doi.org/10.1007/bf01182355
Navier CLMH. Memoir on the laws of fluid motion. Memoi Royal Acad Sci Instit France. 1823;6:389-440.
Saqib M, Khan I, Shafie S. Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT’s nanofluid through a porous medium. Chaos Solit Fract. 2018;116:79-85. https://doi.org/10.1016/j.chaos.2018.09.007
Saqib M, Khan I, Shafie S. Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv Differ Equat. 2019;2019(1)e52. https://doi.org/10.1186/s13662-019-1988-5
Hussanan A, Khan I, Salleh M, Shafie S. Slip effects on unsteady free convective heat and mass transfer flow with Newtonian heating. Thermal Sci. 2016;20(6):1939-1852. https://doi.org/10.2298/tsci131119142a
Saqib M, Khan I, Chu YM, Qushairi A, Shafie S, Nisar KS. Multiple fractional solutions for magnetic bio-nanofluid using Oldroyd-B model in a porous medium with ramped wall heating and variable velocity. Appl Sci. 2020;10(11):e3886. https://doi.org/10.3390/app10113886
Saqib M, Shafie S, Khan I, Chu YM, Nisar KS. Symmetric MHD channel flow of nonlocal fractional model of BTF containing hybrid nanoparticles. Symmetry. 2020;12(4):e663. https://doi.org/10.3390/sym12040663
Saqib M, Rahman A, Mohammad NF, Ling D, Shafie S. Application of fractional derivative without singular and local kernel to enhanced heat transfer in CNTs nanofluid over an inclined plate. Symmetry. 2020;12(5):768-768. https://doi.org/10.3390/sym12050768
Saqib M, Hanif H, Abdeljawad T, Khan I, Shafie S, Nisar KS. Heat transfer in MHD flow of Maxwell fluid via fractional Cattaneo-Friedrich model: a finite difference approach. Comput Mater Cont. 2020;65(3):1959-1973. https://doi.org/10.32604/cmc.2020.011339
Hussanan A, Salleh MZ, Khan I, Shafie S. Analytical solution for suction and injection flow of a viscoplastic Casson fluid past a stretching surface in the presence of viscous dissipation. Neural Comput Appl. 2016;29(12):1507-1515. https://doi.org/10.1007/s00521-016-2674-0
Hussanan A, Khan I, Gorji MR, Khan WA. CNTS-Water–Based nanofluid over a stretching sheet. BioNanoScience. 2019;9(1):21-29. https://doi.org/10.1007/s12668-018-0592-6
Hussanan A, Salleh MZ, Alkasasbeh HT, Khan I. MHD flow and heat transfer in a Casson fluid over a nonlinearly stretching sheet with Newtonian heating. Heat Trans Res. 2018;49(12):1185-1198. https://doi.org/10.1615/heattransres.2018014771
Sheikh NA, Ling D, Khan I, Kumar D, Nisar KS. A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alexandria Eng J. 2019;59(5):2865-2876. https://doi.org/10.1016/j.aej.2019.12.023
Ali F, Sheikh NA, Khan I, Saqib M. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J Magnet Magnet Mater. 2017;423:327-336. https://doi.org/10.1016/j.jmmm.2016.09.125
Sheikh NA, Chuan Ching DL, Khan I, Sakidin H. Generalization of the convective flow of brinkman-type fluid using fourier’s and fick’s laws: exact solutions and entropy generation. Tsai SB, ed. Mathematical Problems in Engineering. 2020;2020:1-13. https://doi.org/10.1155/2020/8896555
Liao S. Beyond Perturbation. CRC Press; 2003.
Liao S. On the homotopy analysis method for nonlinear problems. Appl Math Comput. 2004;147(2):499-513. https://doi.org/10.1016/s0096-3003(02)00790-7
Liao S, Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow problems. J Fluid Mech. 2002;453:411-425. https://doi.org/10.1017/s0022112001007169
Hayat T, Khan M, Ayub M. Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field. J Math Anal Appl. 2004;298(1):225-244. https://doi.org/10.1016/j.jmaa.2004.05.011
Yang C, Liao S. On the explicit, purely analytic solution of Von Kármán swirling viscous flow. Commun Nonl Sci Numer Simul. 2004;11(1):83-93. https://doi.org/10.1016/j.cnsns.2004.05.006
Crane LR. Flow past a stretching plate. J Appl Math Phy. 1970;21(4):645-647. https://doi.org/10.1007/bf01587695
Brady JF, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier—Stokes equations with reverse flow. J Fluid Mech. 1981;112(-1):127-127. https://doi.org/10.1017/s0022112081000323
Wang CY. The three-dimensional flow due to a stretching flat surface. Phy Fluids. 1984;27(8):1915-1915. https://doi.org/10.1063/1.864868
Wang CY. Stretching a surface in a rotating fluid. J Appl Math Phy. 1988;39(2):177-185. https://doi.org/10.1007/bf00945764
Copyright (c) 2025 Dr. Sajid Hussain, Shafqat Ali, Shahzad Shabbir, Ayesha Mahmood, Samer Perveen, Muhammad Riaz

This work is licensed under a Creative Commons Attribution 4.0 International License.
