Quantum Principles from Time-Phase Geometry: A Relativistic Foundation for Uncertainty, Superposition, and Interference

Quantum Principles from Time-Phase Geometry: A Relativistic Foundation for Uncertainty, Superposition, and Interference

Keywords: interference, quantum principles, superposition,, time-phase geometry,, uncertainty

Abstract

Abstract Views: 0

In this paper, we extend the framework introduced in [1], which proposed a two-dimensional model of time as a means to reconcile relativistic invariance with quantum discreteness. Building on this foundation, we derive key principles of quantum theory such as the uncertainty and exclusion principles and also introduce a fourth postulate: “The probability of an event is the same in all inertial frames of reference (IFR), independent of the observer's position in space.” This postulate enables us also to derive the probability amplitude interference from a purely relativistic time-phase geometry. We show that trajectories in the two-dimensional time plane, governed by relativistic constraints and discrete frequency-phase dynamics, naturally give rise to quantized measurements and path-based superposition. Using the Mach-Zehnder interferometer as an illustrative case, we demonstrate that the square of the proper time trajectory corresponds to quantum probability and interference phenomena emerge from the structure of phase evolution in time. Our formulation also aligns with Feynman’s path integral framework, showing that quantum mechanics can be interpreted as a direct geometric consequence of extended relativistic principles.

Downloads

Download data is not yet available.

References

Steinvorth, R., & Mardan Azmi, S. A. (2025). Two dimensions of time: Reconciling relativistic invariance and quantum discreteness [Preprint]. figshare. https://doi.org/10.6084/m9.figshare.29517641

Wu, Y., & Li, H. (2014). Geometric formulation of the uncertainty principle. Physical Review A, 89(3), 034101. https://doi.org/10.1103/PhysRevA.89.034101

Gessner, M., & Pezzé, L. (2023). Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins. PRX Quantum, 4(2), 020314. https://doi.org/10.1103/PRXQuantum.4.020314

Giné, J., & Luciano, G. G. (2022). Gravitational effects on the Heisenberg Uncertainty Principle: A geometric approach. Results in Physics, 38, 105594. https://doi.org/10.1016/j.rinp.2022.105594

Capozziello, S., Lambiase, G. & Scarpetta, G. Generalized Uncertainty Principle from QuantumGeometry. International Journal of Theoretical Physics 39, 15–22 (2000). https://doi.org/10.1023/A:1003634814685

Dragoman, D. (2001). Quantum interference as phase space filtering. Optik, 112(1), 31–36. https://doi.org/10.1078/0030-4026-00006

Anastopoulos, C., & Savvidou, N. (2003). The role of phase space geometry in Heisenberg’s uncertainty relation. Annals of Physics, 308(1), 329–353. https://doi.org/10.1016/S0003-4916(03)00145-3

Dowker, F., & Sorkin, R. D. (2023). The reference-frame independence of quantum probabilities. arXiv preprint. https://doi.org/10.48550/arXiv.2301.00692

Gibbons, G. W. (2011). The emergent nature of time and the complex numbers in quantum cosmology. arXiv preprint. https://doi.org/10.48550/arXiv.1111.0457

Brody, D. C., & Hughston, L. P. (2001). Geometric quantum mechanics. Journal of Geometry and Physics, 38(1), 19–53. https://doi.org/10.1016/S0393-0440(00)00052-8

Heydari, H. (2015). Geometry and structure of quantum phase space. arXiv preprint. https://doi.org/10.48550/arXiv.1504.02946

Palmer, T. N. (2009). The invariant set postulate: A new geometric framework for the foundations of quantum theory and the role played by gravity. Proceedings of the Royal Society A, 465(2108), 3165–3185. https://doi.org/10.1098/rspa.2009.0080

Singh, S., & Katti, R. (2024). Quantum analysis of a Mach–Zehnder interferometer with propagating a single-photon Gaussian wave packet. Journal of the Optical Society of America B, 41(2), 456–465. https://doi.org/10.1364/JOSAB.498566

Zych, M., Costa, F., Pikovski, I., & Brukner, Č. (2011). Quantum interferometric visibility as a witness of general relativistic proper time. Nature Communications, 2, 505. https://doi.org/10.1038/ncomms1498

Asenbaum, P., Overstreet, C., Kovachy, T., Brown, D. D., Hogan, J. M., & Kasevich, M. A. (2017). Phase shift in an atom interferometer due to spacetime curvature across its wave function. Physical Review Letters, 118(18), 183602. https://doi.org/10.1103/PhysRevLett.118.183602

Samuel, J., & Bhandari, R. (2023). Geometry and quantum interference: The general setting for Berry’s phase. Nature, 625, 79–80. https://doi.org/10.1038/d44151-023-00171-4

Pikovski, I., Zych, M., Costa, F., & Brukner, Č. (2015). Universal decoherence due to gravitational time dilation. Nature Physics, 11, 668–672. https://doi.org/10.1038/nphys3366

Christodoulou, M., & Rovelli, C. (2019). On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B, 792, 64–68. https://doi.org/10.1016/j.physletb.2019.03.015

Greenberger, D. M., Horne, M. A., & Zeilinger, A. (1993). Multiparticle interferometry and the superposition principle. Physics Today, 46(8), 22–29. https://doi.org/10.1063/1.881360

Halliwell, J. J. (2005). Probability and complex numbers in quantum mechanics: A decoherent histories perspective. Contemporary Physics, 46(2), 93–101. https://doi.org/10.1103/PhysRevD.80.124032

Anastopoulos, C., & Savvidou, N. (2003). The role of phase space geometry in Heisenberg’s uncertainty relation. Annals of Physics, 308(1), 329–353. https://doi.org/10.1016/S0003-4916(03)00145-3

Bonder, Y., Okon, E., & Sudarsky, D. (2015). Can gravity account for the emergence of classicality? Physical Review D, 92(12), 124050. https://doi.org/10.1103/PhysRevD.92.124050

Carruthers, P., & Nieto, M. M. (1968). Phase‐and‐angle variables in quantum mechanics. Reviews of Modern Physics, 40(2), 411–440. https://doi.org/10.1103/RevModPhys.40.411

Vourdas, A. (2004). Analytic representations in quantum mechanics. Journal of Physics A: Mathematical and General, 37(3), 819–852. https://iopscience.iop.org/article/10.1088/0305-4470/39/7/R01

Doplicher, S., Fredenhagen, K., & Roberts, J. E. (1995). The quantum structure of spacetime at the Planck scale and quantum fields. Communications in Mathematical Physics, 172(1), 187–220. https://doi.org/10.1007/BF02104515

Kempf, A. (2000). Fields over unsharp coordinates. Physical Review Letters, 85(14), 2873–2876. https://doi.org/10.1103/PhysRevLett.85.2873

Kempf, A. (2004). Covariant information-density cutoff in curved space-time. Physical Review Letters, 92(22), 221301. https://doi.org/10.1103/PhysRevLett.92.221301

Samuel, J., & Bhandari, R. (1988). General setting for Berry’s phase. Physical Review Letters, 60(23), 2339–2342. https://doi.org/10.1103/PhysRevLett.60.2339

Anzaki, R., Fukushima, K., Hidaka, Y., & Oka, T. (2015). Restricted phase-space approximation in real-time stochastic quantization. Annals of Physics, 353, 107–128. https://doi.org/10.1016/j.aop.2014.11.004

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Baez, J. C. (2012). Division algebras and quantum theory. Foundations of Physics, 42, 819–855. https://doi.org/10.1007/s10701-011-9566-z

Paz, J. P., & Zurek, W. H. (2001). Environment induced decoherence and the transition from quantum to classical. In R. Kaiser, C. Westbrook, & F. David (Eds.), Coherent Atomic Matter Waves (Les Houches Lecture Series, Vol. 72, pp. 533–614). Springer. https://doi.org/10.1007/3-540-45338-5_8

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715

Goyal, P., Knuth, K. H., & Skilling, J. (2010). Origin of complex quantum amplitudes and Feynman’s rules. Physical Review A, 81(2), 022109. https://doi.org/10.1103/PhysRevA.81.022109

Hall, M. J. W. (2001). Exact uncertainty relations. Physical Review A, 64(5), 052103. https://doi.org/10.1103/PhysRevA.64.052103

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637–1678. https://doi.org/10.1007/BF02302261

Egusquiza, I. L., & Muga, J. G. (1999). Free-motion time-of-arrival operator and probability distribution. Physical Review A, 61(1), 012104. https://doi.org/10.1103/PhysRevA.61.012104

Aharonov, Y., & Kaufherr, T. (2004). Quantum frames of reference. Physical Review D, 30(2), 368–385. https://doi.org/10.1103/PhysRevD.30.368

Busch, P., Heinonen, T., & Lahti, P. (2007). Heisenberg’s uncertainty principle. Physics Reports, 452(6), 155–176. https://doi.org/10.1016/j.physrep.2007.05.006

Amrein, W. O. (1969). On the time-energy uncertainty relation. Helvetica Physica Acta, 42, 149–190. https://doi.org/10.5169/seals-114037

Kok, P. (2014). A First Course in Quantum Mechanics. Sheffield: Apple Books.

Susskind, L., & Friedman, A. (2017). Special Relativity and Classical Field Theory: The Theoretical Minimum. New York: Basic Books.

Feynman, R. P. (1985). The Strange Theory of Light and Matter. Princeton: Princeton University Press

Steinvorth, R., & Mardan Azmi, S. A. (2025b). Foundations of a Two-Time Relativistic Framework: Lorentz Symmetry, Proper Time, and Matter Structure [Preprint]. figshare.

https://figshare.com/s/a7a911e914bb5778ea51

Published
2025-09-29
How to Cite
1.
Steinvorth R, Azmi SAM. Quantum Principles from Time-Phase Geometry: A Relativistic Foundation for Uncertainty, Superposition, and Interference. Sci Inquiry Rev [Internet]. 2025Sep.29 [cited 2025Oct.6];9(1):37-. Available from: https://journals.umt.edu.pk/index.php/SIR/article/view/7421
Section
Mathematics